/** * File: top_k.dart * Created Time: 2023-08-15 * Author: liuyuxin (gvenusleo@gmail.com) */ import '../utils/print_util.dart'; /* Using heap to find the largest k elements in an array */ MinHeap topKHeap(List nums, int k) { // Initialize a min-heap and push the first k elements of the array into the heap MinHeap heap = MinHeap(nums.sublist(0, k)); // From the k+1th element, keep the heap length as k for (int i = k; i < nums.length; i++) { // If the current element is larger than the heap top element, remove the heap top element and enter the current element into the heap if (nums[i] > heap.peek()) { heap.pop(); heap.push(nums[i]); } } return heap; } /* Driver Code */ void main() { List nums = [1, 7, 6, 3, 2]; int k = 3; MinHeap res = topKHeap(nums, k); print("The largest $k elements are"); res.print(); } /* Min-heap */ class MinHeap { late List _minHeap; /* Constructor, build heap based on input list */ MinHeap(List nums) { // Add all list elements into the heap _minHeap = nums; // Heapify all nodes except leaves for (int i = _parent(size() - 1); i >= 0; i--) { siftDown(i); } } /* Return elements from the heap */ List getHeap() { return _minHeap; } /* Get index of left child node */ int _left(int i) { return 2 * i + 1; } /* Get index of right child node */ int _right(int i) { return 2 * i + 2; } /* Get index of parent node */ int _parent(int i) { return (i - 1) ~/ 2; // Integer division down } /* Swap elements */ void _swap(int i, int j) { int tmp = _minHeap[i]; _minHeap[i] = _minHeap[j]; _minHeap[j] = tmp; } /* Get heap size */ int size() { return _minHeap.length; } /* Determine if heap is empty */ bool isEmpty() { return size() == 0; } /* Access heap top element */ int peek() { return _minHeap[0]; } /* Push the element into heap */ void push(int val) { // Add node _minHeap.add(val); // Heapify from bottom to top siftUp(size() - 1); } /* Start heapifying node i, from bottom to top */ void siftUp(int i) { while (true) { // Get parent node of node i int p = _parent(i); // When "crossing the root node" or "node does not need repair", end heapification if (p < 0 || _minHeap[i] >= _minHeap[p]) { break; } // Swap two nodes _swap(i, p); // Loop upwards heapification i = p; } } /* Element exits heap */ int pop() { // Empty handling if (isEmpty()) throw Exception('堆为空'); // Swap the root node with the rightmost leaf node (swap the first element with the last element) _swap(0, size() - 1); // Remove node int val = _minHeap.removeLast(); // Heapify from top to bottom siftDown(0); // Return heap top element return val; } /* Start heapifying node i, from top to bottom */ void siftDown(int i) { while (true) { // Determine the largest node among i, l, r, noted as ma int l = _left(i); int r = _right(i); int mi = i; if (l < size() && _minHeap[l] < _minHeap[mi]) mi = l; if (r < size() && _minHeap[r] < _minHeap[mi]) mi = r; // If node i is the largest or indices l, r are out of bounds, no further heapification needed, break if (mi == i) break; // Swap two nodes _swap(i, mi); // Loop downwards heapification i = mi; } } /* Print heap (binary tree) */ void print() { printHeap(_minHeap); } }