/** * File: min_path_sum.dart * Created Time: 2023-08-11 * Author: liuyuxin (gvenusleo@gmail.com) */ import 'dart:math'; /* Minimum path sum: Brute force search */ int minPathSumDFS(List> grid, int i, int j) { // If it's the top-left cell, terminate the search if (i == 0 && j == 0) { return grid[0][0]; } // If the row or column index is out of bounds, return a +∞ cost if (i < 0 || j < 0) { // In Dart, the int type is a fixed-range integer, there is no value representing "infinity" return BigInt.from(2).pow(31).toInt(); } // Calculate the minimum path cost from the top-left to (i-1, j) and (i, j-1) int up = minPathSumDFS(grid, i - 1, j); int left = minPathSumDFS(grid, i, j - 1); // Return the minimum path cost from the top-left to (i, j) return min(left, up) + grid[i][j]; } /* Minimum path sum: Memoized search */ int minPathSumDFSMem(List> grid, List> mem, int i, int j) { // If it's the top-left cell, terminate the search if (i == 0 && j == 0) { return grid[0][0]; } // If the row or column index is out of bounds, return a +∞ cost if (i < 0 || j < 0) { // In Dart, the int type is a fixed-range integer, there is no value representing "infinity" return BigInt.from(2).pow(31).toInt(); } // If there is a record, return it if (mem[i][j] != -1) { return mem[i][j]; } // The minimum path cost from the left and top cells int up = minPathSumDFSMem(grid, mem, i - 1, j); int left = minPathSumDFSMem(grid, mem, i, j - 1); // Record and return the minimum path cost from the top-left to (i, j) mem[i][j] = min(left, up) + grid[i][j]; return mem[i][j]; } /* Minimum path sum: Dynamic programming */ int minPathSumDP(List> grid) { int n = grid.length, m = grid[0].length; // Initialize dp table List> dp = List.generate(n, (i) => List.filled(m, 0)); dp[0][0] = grid[0][0]; // State transition: first row for (int j = 1; j < m; j++) { dp[0][j] = dp[0][j - 1] + grid[0][j]; } // State transition: first column for (int i = 1; i < n; i++) { dp[i][0] = dp[i - 1][0] + grid[i][0]; } // State transition: the rest of the rows and columns for (int i = 1; i < n; i++) { for (int j = 1; j < m; j++) { dp[i][j] = min(dp[i][j - 1], dp[i - 1][j]) + grid[i][j]; } } return dp[n - 1][m - 1]; } /* Minimum path sum: Space-optimized dynamic programming */ int minPathSumDPComp(List> grid) { int n = grid.length, m = grid[0].length; // Initialize dp table List dp = List.filled(m, 0); dp[0] = grid[0][0]; for (int j = 1; j < m; j++) { dp[j] = dp[j - 1] + grid[0][j]; } // State transition: the rest of the rows for (int i = 1; i < n; i++) { // State transition: first column dp[0] = dp[0] + grid[i][0]; // State transition: the rest of the columns for (int j = 1; j < m; j++) { dp[j] = min(dp[j - 1], dp[j]) + grid[i][j]; } } return dp[m - 1]; } /* Driver Code */ void main() { List> grid = [ [1, 3, 1, 5], [2, 2, 4, 2], [5, 3, 2, 1], [4, 3, 5, 2], ]; int n = grid.length, m = grid[0].length; // Brute force search int res = minPathSumDFS(grid, n - 1, m - 1); print("Minimum path sum from the top-left to the bottom-right corner = $res"); // Memoized search List> mem = List.generate(n, (i) => List.filled(m, -1)); res = minPathSumDFSMem(grid, mem, n - 1, m - 1); print("Minimum path sum from the top-left to the bottom-right corner = $res"); // Dynamic programming res = minPathSumDP(grid); print("Minimum path sum from the top-left to the bottom-right corner = $res"); // Space-optimized dynamic programming res = minPathSumDPComp(grid); print("Minimum path sum from the top-left to the bottom-right corner = $res"); }