/** * File: time_complexity.dart * Created Time: 2023-02-12 * Author: Jefferson (JeffersonHuang77@gmail.com) */ // ignore_for_file: unused_local_variable /* Constant complexity */ int constant(int n) { int count = 0; int size = 100000; for (var i = 0; i < size; i++) { count++; } return count; } /* Linear complexity */ int linear(int n) { int count = 0; for (var i = 0; i < n; i++) { count++; } return count; } /* Linear complexity (traversing an array) */ int arrayTraversal(List nums) { int count = 0; // Loop count is proportional to the length of the array for (var _num in nums) { count++; } return count; } /* Quadratic complexity */ int quadratic(int n) { int count = 0; // Loop count is squared in relation to the data size n for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) { count++; } } return count; } /* Quadratic complexity (bubble sort) */ int bubbleSort(List nums) { int count = 0; // Counter // Outer loop: unsorted range is [0, i] for (var i = nums.length - 1; i > 0; i--) { // Inner loop: swap the largest element in the unsorted range [0, i] to the right end of the range for (var j = 0; j < i; j++) { if (nums[j] > nums[j + 1]) { // Swap nums[j] and nums[j + 1] int tmp = nums[j]; nums[j] = nums[j + 1]; nums[j + 1] = tmp; count += 3; // Element swap includes 3 individual operations } } } return count; } /* Exponential complexity (loop implementation) */ int exponential(int n) { int count = 0, base = 1; // Cells split into two every round, forming the sequence 1, 2, 4, 8, ..., 2^(n-1) for (var i = 0; i < n; i++) { for (var j = 0; j < base; j++) { count++; } base *= 2; } // count = 1 + 2 + 4 + 8 + .. + 2^(n-1) = 2^n - 1 return count; } /* Exponential complexity (recursive implementation) */ int expRecur(int n) { if (n == 1) return 1; return expRecur(n - 1) + expRecur(n - 1) + 1; } /* Logarithmic complexity (loop implementation) */ int logarithmic(int n) { int count = 0; while (n > 1) { n = n ~/ 2; count++; } return count; } /* Logarithmic complexity (recursive implementation) */ int logRecur(int n) { if (n <= 1) return 0; return logRecur(n ~/ 2) + 1; } /* Linear logarithmic complexity */ int linearLogRecur(int n) { if (n <= 1) return 1; int count = linearLogRecur(n ~/ 2) + linearLogRecur(n ~/ 2); for (var i = 0; i < n; i++) { count++; } return count; } /* Factorial complexity (recursive implementation) */ int factorialRecur(int n) { if (n == 0) return 1; int count = 0; // From 1 split into n for (var i = 0; i < n; i++) { count += factorialRecur(n - 1); } return count; } /* Driver Code */ void main() { // Can modify n to experience the trend of operation count changes under various complexities int n = 8; print('输入数据大小 n = $n'); int count = constant(n); print('常数阶的操作数量 = $count'); count = linear(n); print('线性阶的操作数量 = $count'); count = arrayTraversal(List.filled(n, 0)); print('线性阶(遍历数组)的操作数量 = $count'); count = quadratic(n); print('平方阶的操作数量 = $count'); final nums = List.filled(n, 0); for (int i = 0; i < n; i++) { nums[i] = n - i; // [n,n-1,...,2,1] } count = bubbleSort(nums); print('平方阶(冒泡排序)的操作数量 = $count'); count = exponential(n); print('指数阶(循环实现)的操作数量 = $count'); count = expRecur(n); print('指数阶(递归实现)的操作数量 = $count'); count = logarithmic(n); print('对数阶(循环实现)的操作数量 = $count'); count = logRecur(n); print('对数阶(递归实现)的操作数量 = $count'); count = linearLogRecur(n); print('线性对数阶(递归实现)的操作数量 = $count'); count = factorialRecur(n); print('阶乘阶(递归实现)的操作数量 = $count'); }