/** * File: binary_search_tree.cs * Created Time: 2022-12-23 * Author: haptear (haptear@hotmail.com) */ namespace hello_algo.chapter_tree; class BinarySearchTree { TreeNode? root; public BinarySearchTree() { // Initialize empty tree root = null; } /* Get binary tree root node */ public TreeNode? GetRoot() { return root; } /* Search node */ public TreeNode? Search(int num) { TreeNode? cur = root; // Loop find, break after passing leaf nodes while (cur != null) { // Target node is in cur's right subtree if (cur.val < num) cur = cur.right; // Target node is in cur's left subtree else if (cur.val > num) cur = cur.left; // Found target node, break loop else break; } // Return target node return cur; } /* Insert node */ public void Insert(int num) { // If tree is empty, initialize root node if (root == null) { root = new TreeNode(num); return; } TreeNode? cur = root, pre = null; // Loop find, break after passing leaf nodes while (cur != null) { // Found duplicate node, thus return if (cur.val == num) return; pre = cur; // Insertion position is in cur's right subtree if (cur.val < num) cur = cur.right; // Insertion position is in cur's left subtree else cur = cur.left; } // Insert node TreeNode node = new(num); if (pre != null) { if (pre.val < num) pre.right = node; else pre.left = node; } } /* Remove node */ public void Remove(int num) { // If tree is empty, return if (root == null) return; TreeNode? cur = root, pre = null; // Loop find, break after passing leaf nodes while (cur != null) { // Found node to be removed, break loop if (cur.val == num) break; pre = cur; // Node to be removed is in cur's right subtree if (cur.val < num) cur = cur.right; // Node to be removed is in cur's left subtree else cur = cur.left; } // If no node to be removed, return if (cur == null) return; // Number of child nodes = 0 or 1 if (cur.left == null || cur.right == null) { // When the number of child nodes = 0/1, child = null/that child node TreeNode? child = cur.left ?? cur.right; // Remove node cur if (cur != root) { if (pre!.left == cur) pre.left = child; else pre.right = child; } else { // If the removed node is the root, reassign the root root = child; } } // Number of child nodes = 2 else { // Get the next node in in-order traversal of cur TreeNode? tmp = cur.right; while (tmp.left != null) { tmp = tmp.left; } // Recursively remove node tmp Remove(tmp.val!.Value); // Replace cur with tmp cur.val = tmp.val; } } } public class binary_search_tree { [Test] public void Test() { /* Initialize binary search tree */ BinarySearchTree bst = new(); // Note that different insertion orders can result in various tree structures. This particular sequence creates a perfect binary tree int[] nums = [8, 4, 12, 2, 6, 10, 14, 1, 3, 5, 7, 9, 11, 13, 15]; foreach (int num in nums) { bst.Insert(num); } Console.WriteLine("\nInitialized binary tree is\n"); PrintUtil.PrintTree(bst.GetRoot()); /* Search node */ TreeNode? node = bst.Search(7); Console.WriteLine("\nThe found node object is " + node + ", node value =" + node?.val); /* Insert node */ bst.Insert(16); Console.WriteLine("\nAfter inserting node 16, the binary tree is\n"); PrintUtil.PrintTree(bst.GetRoot()); /* Remove node */ bst.Remove(1); Console.WriteLine("\nAfter removing node 1, the binary tree is\n"); PrintUtil.PrintTree(bst.GetRoot()); bst.Remove(2); Console.WriteLine("\nAfter removing node 2, the binary tree is\n"); PrintUtil.PrintTree(bst.GetRoot()); bst.Remove(4); Console.WriteLine("\nAfter removing node 4, the binary tree is\n"); PrintUtil.PrintTree(bst.GetRoot()); } }