/** * File: avl_tree.cs * Created Time: 2022-12-23 * Author: haptear (haptear@hotmail.com) */ namespace hello_algo.chapter_tree; /* AVL tree */ class AVLTree { public TreeNode? root; // Root node /* Get node height */ int Height(TreeNode? node) { // Empty node height is -1, leaf node height is 0 return node == null ? -1 : node.height; } /* Update node height */ void UpdateHeight(TreeNode node) { // Node height equals the height of the tallest subtree + 1 node.height = Math.Max(Height(node.left), Height(node.right)) + 1; } /* Get balance factor */ public int BalanceFactor(TreeNode? node) { // Empty node balance factor is 0 if (node == null) return 0; // Node balance factor = left subtree height - right subtree height return Height(node.left) - Height(node.right); } /* Right rotation operation */ TreeNode? RightRotate(TreeNode? node) { TreeNode? child = node?.left; TreeNode? grandChild = child?.right; // Rotate node to the right around child child.right = node; node.left = grandChild; // Update node height UpdateHeight(node); UpdateHeight(child); // Return the root of the subtree after rotation return child; } /* Left rotation operation */ TreeNode? LeftRotate(TreeNode? node) { TreeNode? child = node?.right; TreeNode? grandChild = child?.left; // Rotate node to the left around child child.left = node; node.right = grandChild; // Update node height UpdateHeight(node); UpdateHeight(child); // Return the root of the subtree after rotation return child; } /* Perform rotation operation to restore balance to the subtree */ TreeNode? Rotate(TreeNode? node) { // Get the balance factor of node int balanceFactorInt = BalanceFactor(node); // Left-leaning tree if (balanceFactorInt > 1) { if (BalanceFactor(node?.left) >= 0) { // Right rotation return RightRotate(node); } else { // First left rotation then right rotation node!.left = LeftRotate(node!.left); return RightRotate(node); } } // Right-leaning tree if (balanceFactorInt < -1) { if (BalanceFactor(node?.right) <= 0) { // Left rotation return LeftRotate(node); } else { // First right rotation then left rotation node!.right = RightRotate(node!.right); return LeftRotate(node); } } // Balanced tree, no rotation needed, return return node; } /* Insert node */ public void Insert(int val) { root = InsertHelper(root, val); } /* Recursively insert node (helper method) */ TreeNode? InsertHelper(TreeNode? node, int val) { if (node == null) return new TreeNode(val); /* 1. Find insertion position and insert node */ if (val < node.val) node.left = InsertHelper(node.left, val); else if (val > node.val) node.right = InsertHelper(node.right, val); else return node; // Do not insert duplicate nodes, return UpdateHeight(node); // Update node height /* 2. Perform rotation operation to restore balance to the subtree */ node = Rotate(node); // Return the root node of the subtree return node; } /* Remove node */ public void Remove(int val) { root = RemoveHelper(root, val); } /* Recursively remove node (helper method) */ TreeNode? RemoveHelper(TreeNode? node, int val) { if (node == null) return null; /* 1. Find and remove the node */ if (val < node.val) node.left = RemoveHelper(node.left, val); else if (val > node.val) node.right = RemoveHelper(node.right, val); else { if (node.left == null || node.right == null) { TreeNode? child = node.left ?? node.right; // Number of child nodes = 0, remove node and return if (child == null) return null; // Number of child nodes = 1, remove node else node = child; } else { // Number of child nodes = 2, remove the next node in in-order traversal and replace the current node with it TreeNode? temp = node.right; while (temp.left != null) { temp = temp.left; } node.right = RemoveHelper(node.right, temp.val!.Value); node.val = temp.val; } } UpdateHeight(node); // Update node height /* 2. Perform rotation operation to restore balance to the subtree */ node = Rotate(node); // Return the root node of the subtree return node; } /* Search node */ public TreeNode? Search(int val) { TreeNode? cur = root; // Loop find, break after passing leaf nodes while (cur != null) { // Target node is in cur's right subtree if (cur.val < val) cur = cur.right; // Target node is in cur's left subtree else if (cur.val > val) cur = cur.left; // Found target node, break loop else break; } // Return target node return cur; } } public class avl_tree { static void TestInsert(AVLTree tree, int val) { tree.Insert(val); Console.WriteLine("\nAfter inserting node " + val + ", the AVL tree is"); PrintUtil.PrintTree(tree.root); } static void TestRemove(AVLTree tree, int val) { tree.Remove(val); Console.WriteLine("\nAfter removing node " + val + ", the AVL tree is"); PrintUtil.PrintTree(tree.root); } [Test] public void Test() { /* Initialize empty AVL tree */ AVLTree avlTree = new(); /* Insert node */ // Notice how the AVL tree maintains balance after inserting nodes TestInsert(avlTree, 1); TestInsert(avlTree, 2); TestInsert(avlTree, 3); TestInsert(avlTree, 4); TestInsert(avlTree, 5); TestInsert(avlTree, 8); TestInsert(avlTree, 7); TestInsert(avlTree, 9); TestInsert(avlTree, 10); TestInsert(avlTree, 6); /* Insert duplicate node */ TestInsert(avlTree, 7); /* Remove node */ // Notice how the AVL tree maintains balance after removing nodes TestRemove(avlTree, 8); // Remove node with degree 0 TestRemove(avlTree, 5); // Remove node with degree 1 TestRemove(avlTree, 4); // Remove node with degree 2 /* Search node */ TreeNode? node = avlTree.Search(7); Console.WriteLine("\nThe found node object is " + node + ", node value =" + node?.val); } }