/** * File: array_binary_tree.cs * Created Time: 2023-07-20 * Author: hpstory (hpstory1024@163.com) */ namespace hello_algo.chapter_tree; /* Array-based binary tree class */ public class ArrayBinaryTree(List arr) { List tree = new(arr); /* List capacity */ public int Size() { return tree.Count; } /* Get the value of the node at index i */ public int? Val(int i) { // If the index is out of bounds, return null, representing an empty spot if (i < 0 || i >= Size()) return null; return tree[i]; } /* Get the index of the left child of the node at index i */ public int Left(int i) { return 2 * i + 1; } /* Get the index of the right child of the node at index i */ public int Right(int i) { return 2 * i + 2; } /* Get the index of the parent of the node at index i */ public int Parent(int i) { return (i - 1) / 2; } /* Level-order traversal */ public List LevelOrder() { List res = []; // Traverse array for (int i = 0; i < Size(); i++) { if (Val(i).HasValue) res.Add(Val(i)!.Value); } return res; } /* Depth-first traversal */ void DFS(int i, string order, List res) { // If it is an empty spot, return if (!Val(i).HasValue) return; // Pre-order traversal if (order == "pre") res.Add(Val(i)!.Value); DFS(Left(i), order, res); // In-order traversal if (order == "in") res.Add(Val(i)!.Value); DFS(Right(i), order, res); // Post-order traversal if (order == "post") res.Add(Val(i)!.Value); } /* Pre-order traversal */ public List PreOrder() { List res = []; DFS(0, "pre", res); return res; } /* In-order traversal */ public List InOrder() { List res = []; DFS(0, "in", res); return res; } /* Post-order traversal */ public List PostOrder() { List res = []; DFS(0, "post", res); return res; } } public class array_binary_tree { [Test] public void Test() { // Initialize binary tree // Use a specific function to convert an array into a binary tree List arr = [1, 2, 3, 4, null, 6, 7, 8, 9, null, null, 12, null, null, 15]; TreeNode? root = TreeNode.ListToTree(arr); Console.WriteLine("\nInitialize binary tree\n"); Console.WriteLine("Binary tree's array representation:"); Console.WriteLine(arr.PrintList()); Console.WriteLine("Binary tree's linked list representation:"); PrintUtil.PrintTree(root); // Array-based binary tree class ArrayBinaryTree abt = new(arr); // Access node int i = 1; int l = abt.Left(i); int r = abt.Right(i); int p = abt.Parent(i); Console.WriteLine("\nThe current node's index is " + i + ", value =" + abt.Val(i)); Console.WriteLine("The index of its left child node is " + l + ", value is " + (abt.Val(l).HasValue ? abt.Val(l) : "null")")); Console.WriteLine("The index of its right child node is " + r + ", value is " + (abt.Val(r).HasValue ? abt.Val(r) : "null")")); Console.WriteLine("The index of its parent node is " + p + ", value is " + (abt.Val(p).HasValue ? abt.Val(p) : "null")")); // Traverse tree List res = abt.LevelOrder(); Console.WriteLine("\nLevel-order traversal is:" + res.PrintList()); res = abt.PreOrder(); Console.WriteLine("Pre-order traversal is:" + res.PrintList()); res = abt.InOrder(); Console.WriteLine("In-order traversal is:" + res.PrintList()); res = abt.PostOrder(); Console.WriteLine("Post-order traversal is:" + res.PrintList()); } }