/** * File: graph_adjacency_matrix.cs * Created Time: 2023-02-06 * Author: zjkung1123 (zjkung1123@gmail.com) */ namespace hello_algo.chapter_graph; /* Undirected graph class based on adjacency matrix */ class GraphAdjMat { List vertices; // Vertex list, elements represent "vertex value", index represents "vertex index" List> adjMat; // Adjacency matrix, row and column indices correspond to "vertex index" /* Constructor */ public GraphAdjMat(int[] vertices, int[][] edges) { this.vertices = []; this.adjMat = []; // Add vertex foreach (int val in vertices) { AddVertex(val); } // Add edge // Please note, edges elements represent vertex indices, corresponding to vertices elements indices foreach (int[] e in edges) { AddEdge(e[0], e[1]); } } /* Get the number of vertices */ int Size() { return vertices.Count; } /* Add vertex */ public void AddVertex(int val) { int n = Size(); // Add new vertex value to the vertex list vertices.Add(val); // Add a row to the adjacency matrix List newRow = new(n); for (int j = 0; j < n; j++) { newRow.Add(0); } adjMat.Add(newRow); // Add a column to the adjacency matrix foreach (List row in adjMat) { row.Add(0); } } /* Remove vertex */ public void RemoveVertex(int index) { if (index >= Size()) throw new IndexOutOfRangeException(); // Remove vertex at `index` from the vertex list vertices.RemoveAt(index); // Remove the row at `index` from the adjacency matrix adjMat.RemoveAt(index); // Remove the column at `index` from the adjacency matrix foreach (List row in adjMat) { row.RemoveAt(index); } } /* Add edge */ // Parameters i, j correspond to vertices element indices public void AddEdge(int i, int j) { // Handle index out of bounds and equality if (i < 0 || j < 0 || i >= Size() || j >= Size() || i == j) throw new IndexOutOfRangeException(); // In an undirected graph, the adjacency matrix is symmetric about the main diagonal, i.e., satisfies (i, j) == (j, i) adjMat[i][j] = 1; adjMat[j][i] = 1; } /* Remove edge */ // Parameters i, j correspond to vertices element indices public void RemoveEdge(int i, int j) { // Handle index out of bounds and equality if (i < 0 || j < 0 || i >= Size() || j >= Size() || i == j) throw new IndexOutOfRangeException(); adjMat[i][j] = 0; adjMat[j][i] = 0; } /* Print adjacency matrix */ public void Print() { Console.Write("Vertex list ="); PrintUtil.PrintList(vertices); Console.WriteLine("Adjacency matrix ="); PrintUtil.PrintMatrix(adjMat); } } public class graph_adjacency_matrix { [Test] public void Test() { /* Initialize undirected graph */ // Please note, edges elements represent vertex indices, corresponding to vertices elements indices int[] vertices = [1, 3, 2, 5, 4]; int[][] edges = [ [0, 1], [0, 3], [1, 2], [2, 3], [2, 4], [3, 4] ]; GraphAdjMat graph = new(vertices, edges); Console.WriteLine("\nAfter initialization, the graph is"); graph.Print(); /* Add edge */ // Indices of vertices 1, 2 are 0, 2 respectively graph.AddEdge(0, 2); Console.WriteLine("\nAfter adding edge 1-2, the graph is"); graph.Print(); /* Remove edge */ // Indices of vertices 1, 3 are 0, 1 respectively graph.RemoveEdge(0, 1); Console.WriteLine("\nAfter removing edge 1-3, the graph is"); graph.Print(); /* Add vertex */ graph.AddVertex(6); Console.WriteLine("\nAfter adding vertex 6, the graph is"); graph.Print(); /* Remove vertex */ // Index of vertex 3 is 1 graph.RemoveVertex(1); Console.WriteLine("\nAfter removing vertex 3, the graph is"); graph.Print(); } }