/** * File: min_path_sum.cs * Created Time: 2023-07-10 * Author: hpstory (hpstory1024@163.com) */ namespace hello_algo.chapter_dynamic_programming; public class min_path_sum { /* Minimum path sum: Brute force search */ int MinPathSumDFS(int[][] grid, int i, int j) { // If it's the top-left cell, terminate the search if (i == 0 && j == 0) { return grid[0][0]; } // If the row or column index is out of bounds, return a +∞ cost if (i < 0 || j < 0) { return int.MaxValue; } // Calculate the minimum path cost from the top-left to (i-1, j) and (i, j-1) int up = MinPathSumDFS(grid, i - 1, j); int left = MinPathSumDFS(grid, i, j - 1); // Return the minimum path cost from the top-left to (i, j) return Math.Min(left, up) + grid[i][j]; } /* Minimum path sum: Memoized search */ int MinPathSumDFSMem(int[][] grid, int[][] mem, int i, int j) { // If it's the top-left cell, terminate the search if (i == 0 && j == 0) { return grid[0][0]; } // If the row or column index is out of bounds, return a +∞ cost if (i < 0 || j < 0) { return int.MaxValue; } // If there is a record, return it if (mem[i][j] != -1) { return mem[i][j]; } // The minimum path cost from the left and top cells int up = MinPathSumDFSMem(grid, mem, i - 1, j); int left = MinPathSumDFSMem(grid, mem, i, j - 1); // Record and return the minimum path cost from the top-left to (i, j) mem[i][j] = Math.Min(left, up) + grid[i][j]; return mem[i][j]; } /* Minimum path sum: Dynamic programming */ int MinPathSumDP(int[][] grid) { int n = grid.Length, m = grid[0].Length; // Initialize dp table int[,] dp = new int[n, m]; dp[0, 0] = grid[0][0]; // State transition: first row for (int j = 1; j < m; j++) { dp[0, j] = dp[0, j - 1] + grid[0][j]; } // State transition: first column for (int i = 1; i < n; i++) { dp[i, 0] = dp[i - 1, 0] + grid[i][0]; } // State transition: the rest of the rows and columns for (int i = 1; i < n; i++) { for (int j = 1; j < m; j++) { dp[i, j] = Math.Min(dp[i, j - 1], dp[i - 1, j]) + grid[i][j]; } } return dp[n - 1, m - 1]; } /* Minimum path sum: Space-optimized dynamic programming */ int MinPathSumDPComp(int[][] grid) { int n = grid.Length, m = grid[0].Length; // Initialize dp table int[] dp = new int[m]; dp[0] = grid[0][0]; // State transition: first row for (int j = 1; j < m; j++) { dp[j] = dp[j - 1] + grid[0][j]; } // State transition: the rest of the rows for (int i = 1; i < n; i++) { // State transition: first column dp[0] = dp[0] + grid[i][0]; // State transition: the rest of the columns for (int j = 1; j < m; j++) { dp[j] = Math.Min(dp[j - 1], dp[j]) + grid[i][j]; } } return dp[m - 1]; } [Test] public void Test() { int[][] grid = [ [1, 3, 1, 5], [2, 2, 4, 2], [5, 3, 2, 1], [4, 3, 5, 2] ]; int n = grid.Length, m = grid[0].Length; // Brute force search int res = MinPathSumDFS(grid, n - 1, m - 1); Console.WriteLine("The minimum path sum from the top left to the bottom right corner is" + res); // Memoized search int[][] mem = new int[n][]; for (int i = 0; i < n; i++) { mem[i] = new int[m]; Array.Fill(mem[i], -1); } res = MinPathSumDFSMem(grid, mem, n - 1, m - 1); Console.WriteLine("The minimum path sum from the top left to the bottom right corner is" + res); // Dynamic programming res = MinPathSumDP(grid); Console.WriteLine("The minimum path sum from the top left to the bottom right corner is" + res); // Space-optimized dynamic programming res = MinPathSumDPComp(grid); Console.WriteLine("The minimum path sum from the top left to the bottom right corner is" + res); } }