/** * File: knapsack.cs * Created Time: 2023-07-07 * Author: hpstory (hpstory1024@163.com) */ namespace hello_algo.chapter_dynamic_programming; public class knapsack { /* 0-1 Knapsack: Brute force search */ int KnapsackDFS(int[] weight, int[] val, int i, int c) { // If all items have been chosen or the knapsack has no remaining capacity, return value 0 if (i == 0 || c == 0) { return 0; } // If exceeding the knapsack capacity, can only choose not to put it in the knapsack if (weight[i - 1] > c) { return KnapsackDFS(weight, val, i - 1, c); } // Calculate the maximum value of not putting in and putting in item i int no = KnapsackDFS(weight, val, i - 1, c); int yes = KnapsackDFS(weight, val, i - 1, c - weight[i - 1]) + val[i - 1]; // Return the greater value of the two options return Math.Max(no, yes); } /* 0-1 Knapsack: Memoized search */ int KnapsackDFSMem(int[] weight, int[] val, int[][] mem, int i, int c) { // If all items have been chosen or the knapsack has no remaining capacity, return value 0 if (i == 0 || c == 0) { return 0; } // If there is a record, return it if (mem[i][c] != -1) { return mem[i][c]; } // If exceeding the knapsack capacity, can only choose not to put it in the knapsack if (weight[i - 1] > c) { return KnapsackDFSMem(weight, val, mem, i - 1, c); } // Calculate the maximum value of not putting in and putting in item i int no = KnapsackDFSMem(weight, val, mem, i - 1, c); int yes = KnapsackDFSMem(weight, val, mem, i - 1, c - weight[i - 1]) + val[i - 1]; // Record and return the greater value of the two options mem[i][c] = Math.Max(no, yes); return mem[i][c]; } /* 0-1 Knapsack: Dynamic programming */ int KnapsackDP(int[] weight, int[] val, int cap) { int n = weight.Length; // Initialize dp table int[,] dp = new int[n + 1, cap + 1]; // State transition for (int i = 1; i <= n; i++) { for (int c = 1; c <= cap; c++) { if (weight[i - 1] > c) { // If exceeding the knapsack capacity, do not choose item i dp[i, c] = dp[i - 1, c]; } else { // The greater value between not choosing and choosing item i dp[i, c] = Math.Max(dp[i - 1, c - weight[i - 1]] + val[i - 1], dp[i - 1, c]); } } } return dp[n, cap]; } /* 0-1 Knapsack: Space-optimized dynamic programming */ int KnapsackDPComp(int[] weight, int[] val, int cap) { int n = weight.Length; // Initialize dp table int[] dp = new int[cap + 1]; // State transition for (int i = 1; i <= n; i++) { // Traverse in reverse order for (int c = cap; c > 0; c--) { if (weight[i - 1] > c) { // If exceeding the knapsack capacity, do not choose item i dp[c] = dp[c]; } else { // The greater value between not choosing and choosing item i dp[c] = Math.Max(dp[c], dp[c - weight[i - 1]] + val[i - 1]); } } } return dp[cap]; } [Test] public void Test() { int[] weight = [10, 20, 30, 40, 50]; int[] val = [50, 120, 150, 210, 240]; int cap = 50; int n = weight.Length; // Brute force search int res = KnapsackDFS(weight, val, n, cap); Console.WriteLine("The maximum value within the bag capacity is" + res); // Memoized search int[][] mem = new int[n + 1][]; for (int i = 0; i <= n; i++) { mem[i] = new int[cap + 1]; Array.Fill(mem[i], -1); } res = KnapsackDFSMem(weight, val, mem, n, cap); Console.WriteLine("The maximum value within the bag capacity is" + res); // Dynamic programming res = KnapsackDP(weight, val, cap); Console.WriteLine("The maximum value within the bag capacity is" + res); // Space-optimized dynamic programming res = KnapsackDPComp(weight, val, cap); Console.WriteLine("The maximum value within the bag capacity is" + res); } }