/** * File: time_complexity.cs * Created Time: 2022-12-23 * Author: haptear (haptear@hotmail.com) */ namespace hello_algo.chapter_computational_complexity; public class time_complexity { void Algorithm(int n) { int a = 1; // +0 (technique 1) a += n; // +0 (technique 1) // +n (technique 2) for (int i = 0; i < 5 * n + 1; i++) { Console.WriteLine(0); } // +n*n (technique 3) for (int i = 0; i < 2 * n; i++) { for (int j = 0; j < n + 1; j++) { Console.WriteLine(0); } } } // Algorithm A time complexity: constant complexity void AlgorithmA(int n) { Console.WriteLine(0); } // Algorithm B time complexity: linear complexity void AlgorithmB(int n) { for (int i = 0; i < n; i++) { Console.WriteLine(0); } } // Algorithm C time complexity: constant complexity void AlgorithmC(int n) { for (int i = 0; i < 1000000; i++) { Console.WriteLine(0); } } /* Constant complexity */ int Constant(int n) { int count = 0; int size = 100000; for (int i = 0; i < size; i++) count++; return count; } /* Linear complexity */ int Linear(int n) { int count = 0; for (int i = 0; i < n; i++) count++; return count; } /* Linear complexity (traversing an array) */ int ArrayTraversal(int[] nums) { int count = 0; // Loop count is proportional to the length of the array foreach (int num in nums) { count++; } return count; } /* Quadratic complexity */ int Quadratic(int n) { int count = 0; // Loop count is squared in relation to the data size n for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) { count++; } } return count; } /* Quadratic complexity (bubble sort) */ int BubbleSort(int[] nums) { int count = 0; // Counter // Outer loop: unsorted range is [0, i] for (int i = nums.Length - 1; i > 0; i--) { // Inner loop: swap the largest element in the unsorted range [0, i] to the right end of the range for (int j = 0; j < i; j++) { if (nums[j] > nums[j + 1]) { // Swap nums[j] and nums[j + 1] (nums[j + 1], nums[j]) = (nums[j], nums[j + 1]); count += 3; // Element swap includes 3 individual operations } } } return count; } /* Exponential complexity (loop implementation) */ int Exponential(int n) { int count = 0, bas = 1; // Cells split into two every round, forming the sequence 1, 2, 4, 8, ..., 2^(n-1) for (int i = 0; i < n; i++) { for (int j = 0; j < bas; j++) { count++; } bas *= 2; } // count = 1 + 2 + 4 + 8 + .. + 2^(n-1) = 2^n - 1 return count; } /* Exponential complexity (recursive implementation) */ int ExpRecur(int n) { if (n == 1) return 1; return ExpRecur(n - 1) + ExpRecur(n - 1) + 1; } /* Logarithmic complexity (loop implementation) */ int Logarithmic(int n) { int count = 0; while (n > 1) { n /= 2; count++; } return count; } /* Logarithmic complexity (recursive implementation) */ int LogRecur(int n) { if (n <= 1) return 0; return LogRecur(n / 2) + 1; } /* Linear logarithmic complexity */ int LinearLogRecur(int n) { if (n <= 1) return 1; int count = LinearLogRecur(n / 2) + LinearLogRecur(n / 2); for (int i = 0; i < n; i++) { count++; } return count; } /* Factorial complexity (recursive implementation) */ int FactorialRecur(int n) { if (n == 0) return 1; int count = 0; // From 1 split into n for (int i = 0; i < n; i++) { count += FactorialRecur(n - 1); } return count; } [Test] public void Test() { // Can modify n to experience the trend of operation count changes under various complexities int n = 8; Console.WriteLine("Input data size n =" + n); int count = Constant(n); Console.WriteLine("Number of constant complexity operations =" + count); count = Linear(n); Console.WriteLine("Number of linear complexity operations =" + count); count = ArrayTraversal(new int[n]); Console.WriteLine("Number of linear complexity operations (traversing the array) =" + count); count = Quadratic(n); Console.WriteLine("Number of quadratic order operations =" + count); int[] nums = new int[n]; for (int i = 0; i < n; i++) nums[i] = n - i; // [n,n-1,...,2,1] count = BubbleSort(nums); Console.WriteLine("Number of quadratic order operations (bubble sort) =" + count); count = Exponential(n); Console.WriteLine("Number of exponential complexity operations (implemented by loop) =" + count); count = ExpRecur(n); Console.WriteLine("Number of exponential complexity operations (implemented by recursion) =" + count); count = Logarithmic(n); Console.WriteLine("Number of logarithmic complexity operations (implemented by loop) =" + count); count = LogRecur(n); Console.WriteLine("Number of logarithmic complexity operations (implemented by recursion) =" + count); count = LinearLogRecur(n); Console.WriteLine("Number of linear logarithmic complexity operations (implemented by recursion) =" + count); count = FactorialRecur(n); Console.WriteLine("Number of factorial complexity operations (implemented by recursion) =" + count); } }