/** * File: space_complexity.cs * Created Time: 2022-12-23 * Author: haptear (haptear@hotmail.com) */ namespace hello_algo.chapter_computational_complexity; public class space_complexity { /* Function */ int Function() { // Perform some operations return 0; } /* Constant complexity */ void Constant(int n) { // Constants, variables, objects occupy O(1) space int a = 0; int b = 0; int[] nums = new int[10000]; ListNode node = new(0); // Variables in a loop occupy O(1) space for (int i = 0; i < n; i++) { int c = 0; } // Functions in a loop occupy O(1) space for (int i = 0; i < n; i++) { Function(); } } /* Linear complexity */ void Linear(int n) { // Array of length n occupies O(n) space int[] nums = new int[n]; // A list of length n occupies O(n) space List nodes = []; for (int i = 0; i < n; i++) { nodes.Add(new ListNode(i)); } // A hash table of length n occupies O(n) space Dictionary map = []; for (int i = 0; i < n; i++) { map.Add(i, i.ToString()); } } /* Linear complexity (recursive implementation) */ void LinearRecur(int n) { Console.WriteLine("Recursion n =" + n); if (n == 1) return; LinearRecur(n - 1); } /* Quadratic complexity */ void Quadratic(int n) { // Matrix occupies O(n^2) space int[,] numMatrix = new int[n, n]; // A two-dimensional list occupies O(n^2) space List> numList = []; for (int i = 0; i < n; i++) { List tmp = []; for (int j = 0; j < n; j++) { tmp.Add(0); } numList.Add(tmp); } } /* Quadratic complexity (recursive implementation) */ int QuadraticRecur(int n) { if (n <= 0) return 0; int[] nums = new int[n]; Console.WriteLine("Recursion n = " + n + " in the length of nums =" + nums.Length); return QuadraticRecur(n - 1); } /* Exponential complexity (building a full binary tree) */ TreeNode? BuildTree(int n) { if (n == 0) return null; TreeNode root = new(0) { left = BuildTree(n - 1), right = BuildTree(n - 1) }; return root; } [Test] public void Test() { int n = 5; // Constant complexity Constant(n); // Linear complexity Linear(n); LinearRecur(n); // Quadratic complexity Quadratic(n); QuadraticRecur(n); // Exponential complexity TreeNode? root = BuildTree(n); PrintUtil.PrintTree(root); } }