/** * File: n_queens.cs * Created Time: 2023-05-04 * Author: hpstory (hpstory1024@163.com) */ namespace hello_algo.chapter_backtracking; public class n_queens { /* Backtracking algorithm: n queens */ void Backtrack(int row, int n, List> state, List>> res, bool[] cols, bool[] diags1, bool[] diags2) { // When all rows are placed, record the solution if (row == n) { List> copyState = []; foreach (List sRow in state) { copyState.Add(new List(sRow)); } res.Add(copyState); return; } // Traverse all columns for (int col = 0; col < n; col++) { // Calculate the main and minor diagonals corresponding to the cell int diag1 = row - col + n - 1; int diag2 = row + col; // Pruning: do not allow queens on the column, main diagonal, or minor diagonal of the cell if (!cols[col] && !diags1[diag1] && !diags2[diag2]) { // Attempt: place the queen in the cell state[row][col] = "Q"; cols[col] = diags1[diag1] = diags2[diag2] = true; // Place the next row Backtrack(row + 1, n, state, res, cols, diags1, diags2); // Retract: restore the cell to an empty spot state[row][col] = "#"; cols[col] = diags1[diag1] = diags2[diag2] = false; } } } /* Solve n queens */ List>> NQueens(int n) { // Initialize an n*n size chessboard, where 'Q' represents the queen and '#' represents an empty spot List> state = []; for (int i = 0; i < n; i++) { List row = []; for (int j = 0; j < n; j++) { row.Add("#"); } state.Add(row); } bool[] cols = new bool[n]; // Record columns with queens bool[] diags1 = new bool[2 * n - 1]; // Record main diagonals with queens bool[] diags2 = new bool[2 * n - 1]; // Record minor diagonals with queens List>> res = []; Backtrack(0, n, state, res, cols, diags1, diags2); return res; } [Test] public void Test() { int n = 4; List>> res = NQueens(n); Console.WriteLine("Input the dimensions of the chessboard as" + n); Console.WriteLine("There are " + res.Count + " solutions to place the queens"); foreach (List> state in res) { Console.WriteLine("--------------------"); foreach (List row in state) { PrintUtil.PrintList(row); } } } }