build
This commit is contained in:
parent
3d2d669b43
commit
baac2d11a7
@ -173,7 +173,7 @@ comments: true
|
||||
|
||||
```csharp title="array.cs"
|
||||
/* 随机访问元素 */
|
||||
int randomAccess(int[] nums) {
|
||||
int RandomAccess(int[] nums) {
|
||||
Random random = new();
|
||||
// 在区间 [0, nums.Length) 中随机抽取一个数字
|
||||
int randomIndex = random.Next(nums.Length);
|
||||
@ -341,7 +341,7 @@ comments: true
|
||||
|
||||
```csharp title="array.cs"
|
||||
/* 在数组的索引 index 处插入元素 num */
|
||||
void insert(int[] nums, int num, int index) {
|
||||
void Insert(int[] nums, int num, int index) {
|
||||
// 把索引 index 以及之后的所有元素向后移动一位
|
||||
for (int i = nums.Length - 1; i > index; i--) {
|
||||
nums[i] = nums[i - 1];
|
||||
@ -512,7 +512,7 @@ comments: true
|
||||
|
||||
```csharp title="array.cs"
|
||||
/* 删除索引 index 处元素 */
|
||||
void remove(int[] nums, int index) {
|
||||
void Remove(int[] nums, int index) {
|
||||
// 把索引 index 之后的所有元素向前移动一位
|
||||
for (int i = index; i < nums.Length - 1; i++) {
|
||||
nums[i] = nums[i + 1];
|
||||
@ -680,7 +680,7 @@ comments: true
|
||||
|
||||
```csharp title="array.cs"
|
||||
/* 遍历数组 */
|
||||
void traverse(int[] nums) {
|
||||
void Traverse(int[] nums) {
|
||||
int count = 0;
|
||||
// 通过索引遍历数组
|
||||
for (int i = 0; i < nums.Length; i++) {
|
||||
@ -879,7 +879,7 @@ comments: true
|
||||
|
||||
```csharp title="array.cs"
|
||||
/* 在数组中查找指定元素 */
|
||||
int find(int[] nums, int target) {
|
||||
int Find(int[] nums, int target) {
|
||||
for (int i = 0; i < nums.Length; i++) {
|
||||
if (nums[i] == target)
|
||||
return i;
|
||||
@ -1053,7 +1053,7 @@ comments: true
|
||||
|
||||
```csharp title="array.cs"
|
||||
/* 扩展数组长度 */
|
||||
int[] extend(int[] nums, int enlarge) {
|
||||
int[] Extend(int[] nums, int enlarge) {
|
||||
// 初始化一个扩展长度后的数组
|
||||
int[] res = new int[nums.Length + enlarge];
|
||||
// 将原数组中的所有元素复制到新数组
|
||||
|
||||
@ -252,11 +252,11 @@ comments: true
|
||||
```csharp title="linked_list.cs"
|
||||
/* 初始化链表 1 -> 3 -> 2 -> 5 -> 4 */
|
||||
// 初始化各个节点
|
||||
ListNode n0 = new ListNode(1);
|
||||
ListNode n1 = new ListNode(3);
|
||||
ListNode n2 = new ListNode(2);
|
||||
ListNode n3 = new ListNode(5);
|
||||
ListNode n4 = new ListNode(4);
|
||||
ListNode n0 = new(1);
|
||||
ListNode n1 = new(3);
|
||||
ListNode n2 = new(2);
|
||||
ListNode n3 = new(5);
|
||||
ListNode n4 = new(4);
|
||||
// 构建引用指向
|
||||
n0.next = n1;
|
||||
n1.next = n2;
|
||||
@ -449,7 +449,7 @@ comments: true
|
||||
|
||||
```csharp title="linked_list.cs"
|
||||
/* 在链表的节点 n0 之后插入节点 P */
|
||||
void insert(ListNode n0, ListNode P) {
|
||||
void Insert(ListNode n0, ListNode P) {
|
||||
ListNode? n1 = n0.next;
|
||||
P.next = n1;
|
||||
n0.next = P;
|
||||
@ -602,7 +602,7 @@ comments: true
|
||||
|
||||
```csharp title="linked_list.cs"
|
||||
/* 删除链表的节点 n0 之后的首个节点 */
|
||||
void remove(ListNode n0) {
|
||||
void Remove(ListNode n0) {
|
||||
if (n0.next == null)
|
||||
return;
|
||||
// n0 -> P -> n1
|
||||
@ -778,7 +778,7 @@ comments: true
|
||||
|
||||
```csharp title="linked_list.cs"
|
||||
/* 访问链表中索引为 index 的节点 */
|
||||
ListNode? access(ListNode head, int index) {
|
||||
ListNode? Access(ListNode head, int index) {
|
||||
for (int i = 0; i < index; i++) {
|
||||
if (head == null)
|
||||
return null;
|
||||
@ -957,7 +957,7 @@ comments: true
|
||||
|
||||
```csharp title="linked_list.cs"
|
||||
/* 在链表中查找值为 target 的首个节点 */
|
||||
int find(ListNode head, int target) {
|
||||
int Find(ListNode head, int target) {
|
||||
int index = 0;
|
||||
while (head != null) {
|
||||
if (head.val == target)
|
||||
|
||||
@ -51,7 +51,7 @@ comments: true
|
||||
```csharp title="list.cs"
|
||||
/* 初始化列表 */
|
||||
// 无初始值
|
||||
List<int> list1 = new ();
|
||||
List<int> list1 = new();
|
||||
// 有初始值
|
||||
int[] numbers = new int[] { 1, 3, 2, 5, 4 };
|
||||
List<int> list = numbers.ToList();
|
||||
@ -1170,7 +1170,7 @@ comments: true
|
||||
private int[] nums; // 数组(存储列表元素)
|
||||
private int numsCapacity = 10; // 列表容量
|
||||
private int numsSize = 0; // 列表长度(即当前元素数量)
|
||||
private int extendRatio = 2; // 每次列表扩容的倍数
|
||||
private readonly int extendRatio = 2; // 每次列表扩容的倍数
|
||||
|
||||
/* 构造方法 */
|
||||
public MyList() {
|
||||
@ -1178,17 +1178,17 @@ comments: true
|
||||
}
|
||||
|
||||
/* 获取列表长度(即当前元素数量)*/
|
||||
public int size() {
|
||||
public int Size() {
|
||||
return numsSize;
|
||||
}
|
||||
|
||||
/* 获取列表容量 */
|
||||
public int capacity() {
|
||||
public int Capacity() {
|
||||
return numsCapacity;
|
||||
}
|
||||
|
||||
/* 访问元素 */
|
||||
public int get(int index) {
|
||||
public int Get(int index) {
|
||||
// 索引如果越界则抛出异常,下同
|
||||
if (index < 0 || index >= numsSize)
|
||||
throw new IndexOutOfRangeException("索引越界");
|
||||
@ -1196,29 +1196,29 @@ comments: true
|
||||
}
|
||||
|
||||
/* 更新元素 */
|
||||
public void set(int index, int num) {
|
||||
public void Set(int index, int num) {
|
||||
if (index < 0 || index >= numsSize)
|
||||
throw new IndexOutOfRangeException("索引越界");
|
||||
nums[index] = num;
|
||||
}
|
||||
|
||||
/* 尾部添加元素 */
|
||||
public void add(int num) {
|
||||
public void Add(int num) {
|
||||
// 元素数量超出容量时,触发扩容机制
|
||||
if (numsSize == numsCapacity)
|
||||
extendCapacity();
|
||||
ExtendCapacity();
|
||||
nums[numsSize] = num;
|
||||
// 更新元素数量
|
||||
numsSize++;
|
||||
}
|
||||
|
||||
/* 中间插入元素 */
|
||||
public void insert(int index, int num) {
|
||||
public void Insert(int index, int num) {
|
||||
if (index < 0 || index >= numsSize)
|
||||
throw new IndexOutOfRangeException("索引越界");
|
||||
// 元素数量超出容量时,触发扩容机制
|
||||
if (numsSize == numsCapacity)
|
||||
extendCapacity();
|
||||
ExtendCapacity();
|
||||
// 将索引 index 以及之后的元素都向后移动一位
|
||||
for (int j = numsSize - 1; j >= index; j--) {
|
||||
nums[j + 1] = nums[j];
|
||||
@ -1229,7 +1229,7 @@ comments: true
|
||||
}
|
||||
|
||||
/* 删除元素 */
|
||||
public int remove(int index) {
|
||||
public int Remove(int index) {
|
||||
if (index < 0 || index >= numsSize)
|
||||
throw new IndexOutOfRangeException("索引越界");
|
||||
int num = nums[index];
|
||||
@ -1244,7 +1244,7 @@ comments: true
|
||||
}
|
||||
|
||||
/* 列表扩容 */
|
||||
public void extendCapacity() {
|
||||
public void ExtendCapacity() {
|
||||
// 新建一个长度为 numsCapacity * extendRatio 的数组,并将原数组拷贝到新数组
|
||||
Array.Resize(ref nums, numsCapacity * extendRatio);
|
||||
// 更新列表容量
|
||||
@ -1252,11 +1252,11 @@ comments: true
|
||||
}
|
||||
|
||||
/* 将列表转换为数组 */
|
||||
public int[] toArray() {
|
||||
public int[] ToArray() {
|
||||
// 仅转换有效长度范围内的列表元素
|
||||
int[] nums = new int[numsSize];
|
||||
for (int i = 0; i < numsSize; i++) {
|
||||
nums[i] = get(i);
|
||||
nums[i] = Get(i);
|
||||
}
|
||||
return nums;
|
||||
}
|
||||
|
||||
@ -66,7 +66,7 @@ comments: true
|
||||
|
||||
```csharp title="preorder_traversal_i_compact.cs"
|
||||
/* 前序遍历:例题一 */
|
||||
void preOrder(TreeNode root) {
|
||||
void PreOrder(TreeNode root) {
|
||||
if (root == null) {
|
||||
return;
|
||||
}
|
||||
@ -74,8 +74,8 @@ comments: true
|
||||
// 记录解
|
||||
res.Add(root);
|
||||
}
|
||||
preOrder(root.left);
|
||||
preOrder(root.right);
|
||||
PreOrder(root.left);
|
||||
PreOrder(root.right);
|
||||
}
|
||||
```
|
||||
|
||||
@ -277,7 +277,7 @@ comments: true
|
||||
|
||||
```csharp title="preorder_traversal_ii_compact.cs"
|
||||
/* 前序遍历:例题二 */
|
||||
void preOrder(TreeNode root) {
|
||||
void PreOrder(TreeNode root) {
|
||||
if (root == null) {
|
||||
return;
|
||||
}
|
||||
@ -287,8 +287,8 @@ comments: true
|
||||
// 记录解
|
||||
res.Add(new List<TreeNode>(path));
|
||||
}
|
||||
preOrder(root.left);
|
||||
preOrder(root.right);
|
||||
PreOrder(root.left);
|
||||
PreOrder(root.right);
|
||||
// 回退
|
||||
path.RemoveAt(path.Count - 1);
|
||||
}
|
||||
@ -580,7 +580,7 @@ comments: true
|
||||
|
||||
```csharp title="preorder_traversal_iii_compact.cs"
|
||||
/* 前序遍历:例题三 */
|
||||
void preOrder(TreeNode root) {
|
||||
void PreOrder(TreeNode root) {
|
||||
// 剪枝
|
||||
if (root == null || root.val == 3) {
|
||||
return;
|
||||
@ -591,8 +591,8 @@ comments: true
|
||||
// 记录解
|
||||
res.Add(new List<TreeNode>(path));
|
||||
}
|
||||
preOrder(root.left);
|
||||
preOrder(root.right);
|
||||
PreOrder(root.left);
|
||||
PreOrder(root.right);
|
||||
// 回退
|
||||
path.RemoveAt(path.Count - 1);
|
||||
}
|
||||
@ -865,23 +865,23 @@ comments: true
|
||||
|
||||
```csharp title=""
|
||||
/* 回溯算法框架 */
|
||||
void backtrack(State state, List<Choice> choices, List<State> res) {
|
||||
void Backtrack(State state, List<Choice> choices, List<State> res) {
|
||||
// 判断是否为解
|
||||
if (isSolution(state)) {
|
||||
if (IsSolution(state)) {
|
||||
// 记录解
|
||||
recordSolution(state, res);
|
||||
RecordSolution(state, res);
|
||||
// 停止继续搜索
|
||||
return;
|
||||
}
|
||||
// 遍历所有选择
|
||||
foreach (Choice choice in choices) {
|
||||
// 剪枝:判断选择是否合法
|
||||
if (isValid(state, choice)) {
|
||||
if (IsValid(state, choice)) {
|
||||
// 尝试:做出选择,更新状态
|
||||
makeChoice(state, choice);
|
||||
backtrack(state, choices, res);
|
||||
MakeChoice(state, choice);
|
||||
Backtrack(state, choices, res);
|
||||
// 回退:撤销选择,恢复到之前的状态
|
||||
undoChoice(state, choice);
|
||||
UndoChoice(state, choice);
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -1225,47 +1225,47 @@ comments: true
|
||||
|
||||
```csharp title="preorder_traversal_iii_template.cs"
|
||||
/* 判断当前状态是否为解 */
|
||||
bool isSolution(List<TreeNode> state) {
|
||||
bool IsSolution(List<TreeNode> state) {
|
||||
return state.Count != 0 && state[^1].val == 7;
|
||||
}
|
||||
|
||||
/* 记录解 */
|
||||
void recordSolution(List<TreeNode> state, List<List<TreeNode>> res) {
|
||||
void RecordSolution(List<TreeNode> state, List<List<TreeNode>> res) {
|
||||
res.Add(new List<TreeNode>(state));
|
||||
}
|
||||
|
||||
/* 判断在当前状态下,该选择是否合法 */
|
||||
bool isValid(List<TreeNode> state, TreeNode choice) {
|
||||
bool IsValid(List<TreeNode> state, TreeNode choice) {
|
||||
return choice != null && choice.val != 3;
|
||||
}
|
||||
|
||||
/* 更新状态 */
|
||||
void makeChoice(List<TreeNode> state, TreeNode choice) {
|
||||
void MakeChoice(List<TreeNode> state, TreeNode choice) {
|
||||
state.Add(choice);
|
||||
}
|
||||
|
||||
/* 恢复状态 */
|
||||
void undoChoice(List<TreeNode> state, TreeNode choice) {
|
||||
void UndoChoice(List<TreeNode> state, TreeNode choice) {
|
||||
state.RemoveAt(state.Count - 1);
|
||||
}
|
||||
|
||||
/* 回溯算法:例题三 */
|
||||
void backtrack(List<TreeNode> state, List<TreeNode> choices, List<List<TreeNode>> res) {
|
||||
void Backtrack(List<TreeNode> state, List<TreeNode> choices, List<List<TreeNode>> res) {
|
||||
// 检查是否为解
|
||||
if (isSolution(state)) {
|
||||
if (IsSolution(state)) {
|
||||
// 记录解
|
||||
recordSolution(state, res);
|
||||
RecordSolution(state, res);
|
||||
}
|
||||
// 遍历所有选择
|
||||
foreach (TreeNode choice in choices) {
|
||||
// 剪枝:检查选择是否合法
|
||||
if (isValid(state, choice)) {
|
||||
if (IsValid(state, choice)) {
|
||||
// 尝试:做出选择,更新状态
|
||||
makeChoice(state, choice);
|
||||
MakeChoice(state, choice);
|
||||
// 进行下一轮选择
|
||||
backtrack(state, new List<TreeNode> { choice.left, choice.right }, res);
|
||||
Backtrack(state, new List<TreeNode> { choice.left, choice.right }, res);
|
||||
// 回退:撤销选择,恢复到之前的状态
|
||||
undoChoice(state, choice);
|
||||
UndoChoice(state, choice);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@ -203,11 +203,11 @@ comments: true
|
||||
|
||||
```csharp title="n_queens.cs"
|
||||
/* 回溯算法:N 皇后 */
|
||||
void backtrack(int row, int n, List<List<string>> state, List<List<List<string>>> res,
|
||||
void Backtrack(int row, int n, List<List<string>> state, List<List<List<string>>> res,
|
||||
bool[] cols, bool[] diags1, bool[] diags2) {
|
||||
// 当放置完所有行时,记录解
|
||||
if (row == n) {
|
||||
List<List<string>> copyState = new List<List<string>>();
|
||||
List<List<string>> copyState = new();
|
||||
foreach (List<string> sRow in state) {
|
||||
copyState.Add(new List<string>(sRow));
|
||||
}
|
||||
@ -225,7 +225,7 @@ comments: true
|
||||
state[row][col] = "Q";
|
||||
cols[col] = diags1[diag1] = diags2[diag2] = true;
|
||||
// 放置下一行
|
||||
backtrack(row + 1, n, state, res, cols, diags1, diags2);
|
||||
Backtrack(row + 1, n, state, res, cols, diags1, diags2);
|
||||
// 回退:将该格子恢复为空位
|
||||
state[row][col] = "#";
|
||||
cols[col] = diags1[diag1] = diags2[diag2] = false;
|
||||
@ -234,11 +234,11 @@ comments: true
|
||||
}
|
||||
|
||||
/* 求解 N 皇后 */
|
||||
List<List<List<string>>> nQueens(int n) {
|
||||
List<List<List<string>>> NQueens(int n) {
|
||||
// 初始化 n*n 大小的棋盘,其中 'Q' 代表皇后,'#' 代表空位
|
||||
List<List<string>> state = new List<List<string>>();
|
||||
List<List<string>> state = new();
|
||||
for (int i = 0; i < n; i++) {
|
||||
List<string> row = new List<string>();
|
||||
List<string> row = new();
|
||||
for (int j = 0; j < n; j++) {
|
||||
row.Add("#");
|
||||
}
|
||||
@ -247,9 +247,9 @@ comments: true
|
||||
bool[] cols = new bool[n]; // 记录列是否有皇后
|
||||
bool[] diags1 = new bool[2 * n - 1]; // 记录主对角线是否有皇后
|
||||
bool[] diags2 = new bool[2 * n - 1]; // 记录副对角线是否有皇后
|
||||
List<List<List<string>>> res = new List<List<List<string>>>();
|
||||
List<List<List<string>>> res = new();
|
||||
|
||||
backtrack(0, n, state, res, cols, diags1, diags2);
|
||||
Backtrack(0, n, state, res, cols, diags1, diags2);
|
||||
|
||||
return res;
|
||||
}
|
||||
|
||||
@ -162,7 +162,7 @@ comments: true
|
||||
|
||||
```csharp title="permutations_i.cs"
|
||||
/* 回溯算法:全排列 I */
|
||||
void backtrack(List<int> state, int[] choices, bool[] selected, List<List<int>> res) {
|
||||
void Backtrack(List<int> state, int[] choices, bool[] selected, List<List<int>> res) {
|
||||
// 当状态长度等于元素数量时,记录解
|
||||
if (state.Count == choices.Length) {
|
||||
res.Add(new List<int>(state));
|
||||
@ -177,7 +177,7 @@ comments: true
|
||||
selected[i] = true;
|
||||
state.Add(choice);
|
||||
// 进行下一轮选择
|
||||
backtrack(state, choices, selected, res);
|
||||
Backtrack(state, choices, selected, res);
|
||||
// 回退:撤销选择,恢复到之前的状态
|
||||
selected[i] = false;
|
||||
state.RemoveAt(state.Count - 1);
|
||||
@ -186,9 +186,9 @@ comments: true
|
||||
}
|
||||
|
||||
/* 全排列 I */
|
||||
List<List<int>> permutationsI(int[] nums) {
|
||||
List<List<int>> res = new List<List<int>>();
|
||||
backtrack(new List<int>(), nums, new bool[nums.Length], res);
|
||||
List<List<int>> PermutationsI(int[] nums) {
|
||||
List<List<int>> res = new();
|
||||
Backtrack(new List<int>(), nums, new bool[nums.Length], res);
|
||||
return res;
|
||||
}
|
||||
```
|
||||
@ -618,7 +618,7 @@ comments: true
|
||||
|
||||
```csharp title="permutations_ii.cs"
|
||||
/* 回溯算法:全排列 II */
|
||||
void backtrack(List<int> state, int[] choices, bool[] selected, List<List<int>> res) {
|
||||
void Backtrack(List<int> state, int[] choices, bool[] selected, List<List<int>> res) {
|
||||
// 当状态长度等于元素数量时,记录解
|
||||
if (state.Count == choices.Length) {
|
||||
res.Add(new List<int>(state));
|
||||
@ -635,7 +635,7 @@ comments: true
|
||||
selected[i] = true;
|
||||
state.Add(choice);
|
||||
// 进行下一轮选择
|
||||
backtrack(state, choices, selected, res);
|
||||
Backtrack(state, choices, selected, res);
|
||||
// 回退:撤销选择,恢复到之前的状态
|
||||
selected[i] = false;
|
||||
state.RemoveAt(state.Count - 1);
|
||||
@ -644,9 +644,9 @@ comments: true
|
||||
}
|
||||
|
||||
/* 全排列 II */
|
||||
List<List<int>> permutationsII(int[] nums) {
|
||||
List<List<int>> res = new List<List<int>>();
|
||||
backtrack(new List<int>(), nums, new bool[nums.Length], res);
|
||||
List<List<int>> PermutationsII(int[] nums) {
|
||||
List<List<int>> res = new();
|
||||
Backtrack(new List<int>(), nums, new bool[nums.Length], res);
|
||||
return res;
|
||||
}
|
||||
```
|
||||
|
||||
@ -131,7 +131,7 @@ comments: true
|
||||
|
||||
```csharp title="subset_sum_i_naive.cs"
|
||||
/* 回溯算法:子集和 I */
|
||||
void backtrack(List<int> state, int target, int total, int[] choices, List<List<int>> res) {
|
||||
void Backtrack(List<int> state, int target, int total, int[] choices, List<List<int>> res) {
|
||||
// 子集和等于 target 时,记录解
|
||||
if (total == target) {
|
||||
res.Add(new List<int>(state));
|
||||
@ -146,18 +146,18 @@ comments: true
|
||||
// 尝试:做出选择,更新元素和 total
|
||||
state.Add(choices[i]);
|
||||
// 进行下一轮选择
|
||||
backtrack(state, target, total + choices[i], choices, res);
|
||||
Backtrack(state, target, total + choices[i], choices, res);
|
||||
// 回退:撤销选择,恢复到之前的状态
|
||||
state.RemoveAt(state.Count - 1);
|
||||
}
|
||||
}
|
||||
|
||||
/* 求解子集和 I(包含重复子集) */
|
||||
List<List<int>> subsetSumINaive(int[] nums, int target) {
|
||||
List<int> state = new List<int>(); // 状态(子集)
|
||||
List<List<int>> SubsetSumINaive(int[] nums, int target) {
|
||||
List<int> state = new(); // 状态(子集)
|
||||
int total = 0; // 子集和
|
||||
List<List<int>> res = new List<List<int>>(); // 结果列表(子集列表)
|
||||
backtrack(state, target, total, nums, res);
|
||||
List<List<int>> res = new(); // 结果列表(子集列表)
|
||||
Backtrack(state, target, total, nums, res);
|
||||
return res;
|
||||
}
|
||||
```
|
||||
@ -588,7 +588,7 @@ comments: true
|
||||
|
||||
```csharp title="subset_sum_i.cs"
|
||||
/* 回溯算法:子集和 I */
|
||||
void backtrack(List<int> state, int target, int[] choices, int start, List<List<int>> res) {
|
||||
void Backtrack(List<int> state, int target, int[] choices, int start, List<List<int>> res) {
|
||||
// 子集和等于 target 时,记录解
|
||||
if (target == 0) {
|
||||
res.Add(new List<int>(state));
|
||||
@ -605,19 +605,19 @@ comments: true
|
||||
// 尝试:做出选择,更新 target, start
|
||||
state.Add(choices[i]);
|
||||
// 进行下一轮选择
|
||||
backtrack(state, target - choices[i], choices, i, res);
|
||||
Backtrack(state, target - choices[i], choices, i, res);
|
||||
// 回退:撤销选择,恢复到之前的状态
|
||||
state.RemoveAt(state.Count - 1);
|
||||
}
|
||||
}
|
||||
|
||||
/* 求解子集和 I */
|
||||
List<List<int>> subsetSumI(int[] nums, int target) {
|
||||
List<int> state = new List<int>(); // 状态(子集)
|
||||
List<List<int>> SubsetSumI(int[] nums, int target) {
|
||||
List<int> state = new(); // 状态(子集)
|
||||
Array.Sort(nums); // 对 nums 进行排序
|
||||
int start = 0; // 遍历起始点
|
||||
List<List<int>> res = new List<List<int>>(); // 结果列表(子集列表)
|
||||
backtrack(state, target, nums, start, res);
|
||||
List<List<int>> res = new(); // 结果列表(子集列表)
|
||||
Backtrack(state, target, nums, start, res);
|
||||
return res;
|
||||
}
|
||||
```
|
||||
@ -1069,7 +1069,7 @@ comments: true
|
||||
|
||||
```csharp title="subset_sum_ii.cs"
|
||||
/* 回溯算法:子集和 II */
|
||||
void backtrack(List<int> state, int target, int[] choices, int start, List<List<int>> res) {
|
||||
void Backtrack(List<int> state, int target, int[] choices, int start, List<List<int>> res) {
|
||||
// 子集和等于 target 时,记录解
|
||||
if (target == 0) {
|
||||
res.Add(new List<int>(state));
|
||||
@ -1091,19 +1091,19 @@ comments: true
|
||||
// 尝试:做出选择,更新 target, start
|
||||
state.Add(choices[i]);
|
||||
// 进行下一轮选择
|
||||
backtrack(state, target - choices[i], choices, i + 1, res);
|
||||
Backtrack(state, target - choices[i], choices, i + 1, res);
|
||||
// 回退:撤销选择,恢复到之前的状态
|
||||
state.RemoveAt(state.Count - 1);
|
||||
}
|
||||
}
|
||||
|
||||
/* 求解子集和 II */
|
||||
List<List<int>> subsetSumII(int[] nums, int target) {
|
||||
List<int> state = new List<int>(); // 状态(子集)
|
||||
List<List<int>> SubsetSumII(int[] nums, int target) {
|
||||
List<int> state = new(); // 状态(子集)
|
||||
Array.Sort(nums); // 对 nums 进行排序
|
||||
int start = 0; // 遍历起始点
|
||||
List<List<int>> res = new List<List<int>>(); // 结果列表(子集列表)
|
||||
backtrack(state, target, nums, start, res);
|
||||
List<List<int>> res = new(); // 结果列表(子集列表)
|
||||
Backtrack(state, target, nums, start, res);
|
||||
return res;
|
||||
}
|
||||
```
|
||||
|
||||
@ -61,7 +61,7 @@ status: new
|
||||
|
||||
```csharp title="iteration.cs"
|
||||
/* for 循环 */
|
||||
int forLoop(int n) {
|
||||
int ForLoop(int n) {
|
||||
int res = 0;
|
||||
// 循环求和 1, 2, ..., n-1, n
|
||||
for (int i = 1; i <= n; i++) {
|
||||
@ -239,7 +239,7 @@ status: new
|
||||
|
||||
```csharp title="iteration.cs"
|
||||
/* while 循环 */
|
||||
int whileLoop(int n) {
|
||||
int WhileLoop(int n) {
|
||||
int res = 0;
|
||||
int i = 1; // 初始化条件变量
|
||||
// 循环求和 1, 2, ..., n-1, n
|
||||
@ -431,7 +431,7 @@ status: new
|
||||
|
||||
```csharp title="iteration.cs"
|
||||
/* while 循环(两次更新) */
|
||||
int whileLoopII(int n) {
|
||||
int WhileLoopII(int n) {
|
||||
int res = 0;
|
||||
int i = 1; // 初始化条件变量
|
||||
// 循环求和 1, 2, 4, 5...
|
||||
@ -636,8 +636,8 @@ status: new
|
||||
|
||||
```csharp title="iteration.cs"
|
||||
/* 双层 for 循环 */
|
||||
string nestedForLoop(int n) {
|
||||
StringBuilder res = new StringBuilder();
|
||||
string NestedForLoop(int n) {
|
||||
StringBuilder res = new();
|
||||
// 循环 i = 1, 2, ..., n-1, n
|
||||
for (int i = 1; i <= n; i++) {
|
||||
// 循环 j = 1, 2, ..., n-1, n
|
||||
@ -851,12 +851,12 @@ status: new
|
||||
|
||||
```csharp title="recursion.cs"
|
||||
/* 递归 */
|
||||
int recur(int n) {
|
||||
int Recur(int n) {
|
||||
// 终止条件
|
||||
if (n == 1)
|
||||
return 1;
|
||||
// 递:递归调用
|
||||
int res = recur(n - 1);
|
||||
int res = Recur(n - 1);
|
||||
// 归:返回结果
|
||||
return n + res;
|
||||
}
|
||||
@ -1055,12 +1055,12 @@ status: new
|
||||
|
||||
```csharp title="recursion.cs"
|
||||
/* 尾递归 */
|
||||
int tailRecur(int n, int res) {
|
||||
int TailRecur(int n, int res) {
|
||||
// 终止条件
|
||||
if (n == 0)
|
||||
return res;
|
||||
// 尾递归调用
|
||||
return tailRecur(n - 1, res + n);
|
||||
return TailRecur(n - 1, res + n);
|
||||
}
|
||||
```
|
||||
|
||||
@ -1237,12 +1237,12 @@ status: new
|
||||
|
||||
```csharp title="recursion.cs"
|
||||
/* 斐波那契数列:递归 */
|
||||
int fib(int n) {
|
||||
int Fib(int n) {
|
||||
// 终止条件 f(1) = 0, f(2) = 1
|
||||
if (n == 1 || n == 2)
|
||||
return n - 1;
|
||||
// 递归调用 f(n) = f(n-1) + f(n-2)
|
||||
int res = fib(n - 1) + fib(n - 2);
|
||||
int res = Fib(n - 1) + Fib(n - 2);
|
||||
// 返回结果 f(n)
|
||||
return res;
|
||||
}
|
||||
@ -1471,9 +1471,9 @@ status: new
|
||||
|
||||
```csharp title="recursion.cs"
|
||||
/* 使用迭代模拟递归 */
|
||||
int forLoopRecur(int n) {
|
||||
int ForLoopRecur(int n) {
|
||||
// 使用一个显式的栈来模拟系统调用栈
|
||||
Stack<int> stack = new Stack<int>();
|
||||
Stack<int> stack = new();
|
||||
int res = 0;
|
||||
// 递:递归调用
|
||||
for (int i = n; i > 0; i--) {
|
||||
@ -1493,7 +1493,25 @@ status: new
|
||||
=== "Go"
|
||||
|
||||
```go title="recursion.go"
|
||||
[class]{}-[func]{forLoopRecur}
|
||||
/* 使用迭代模拟递归 */
|
||||
func forLoopRecur(n int) int {
|
||||
// 使用一个显式的栈来模拟系统调用栈
|
||||
stack := list.New()
|
||||
res := 0
|
||||
// 递:递归调用
|
||||
for i := n; i > 0; i-- {
|
||||
// 通过“入栈操作”模拟“递”
|
||||
stack.PushBack(i)
|
||||
}
|
||||
// 归:返回结果
|
||||
for stack.Len() != 0 {
|
||||
// 通过“出栈操作”模拟“归”
|
||||
res += stack.Back().Value.(int)
|
||||
stack.Remove(stack.Back())
|
||||
}
|
||||
// res = 1+2+3+...+n
|
||||
return res
|
||||
}
|
||||
```
|
||||
|
||||
=== "Swift"
|
||||
|
||||
@ -111,16 +111,16 @@ comments: true
|
||||
}
|
||||
|
||||
/* 函数 */
|
||||
int function() {
|
||||
int Function() {
|
||||
// 执行某些操作...
|
||||
return 0;
|
||||
}
|
||||
|
||||
int algorithm(int n) { // 输入数据
|
||||
int Algorithm(int n) { // 输入数据
|
||||
const int a = 0; // 暂存数据(常量)
|
||||
int b = 0; // 暂存数据(变量)
|
||||
Node node = new Node(0); // 暂存数据(对象)
|
||||
int c = function(); // 栈帧空间(调用函数)
|
||||
Node node = new(0); // 暂存数据(对象)
|
||||
int c = Function(); // 栈帧空间(调用函数)
|
||||
return a + b + c; // 输出数据
|
||||
}
|
||||
```
|
||||
@ -366,7 +366,7 @@ comments: true
|
||||
=== "C#"
|
||||
|
||||
```csharp title=""
|
||||
void algorithm(int n) {
|
||||
void Algorithm(int n) {
|
||||
int a = 0; // O(1)
|
||||
int[] b = new int[10000]; // O(1)
|
||||
if (n > 10) {
|
||||
@ -532,20 +532,20 @@ comments: true
|
||||
=== "C#"
|
||||
|
||||
```csharp title=""
|
||||
int function() {
|
||||
int Function() {
|
||||
// 执行某些操作
|
||||
return 0;
|
||||
}
|
||||
/* 循环 O(1) */
|
||||
void loop(int n) {
|
||||
void Loop(int n) {
|
||||
for (int i = 0; i < n; i++) {
|
||||
function();
|
||||
Function();
|
||||
}
|
||||
}
|
||||
/* 递归 O(n) */
|
||||
int recur(int n) {
|
||||
int Recur(int n) {
|
||||
if (n == 1) return 1;
|
||||
return recur(n - 1);
|
||||
return Recur(n - 1);
|
||||
}
|
||||
```
|
||||
|
||||
@ -807,25 +807,25 @@ $$
|
||||
|
||||
```csharp title="space_complexity.cs"
|
||||
/* 函数 */
|
||||
int function() {
|
||||
int Function() {
|
||||
// 执行某些操作
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* 常数阶 */
|
||||
void constant(int n) {
|
||||
void Constant(int n) {
|
||||
// 常量、变量、对象占用 O(1) 空间
|
||||
int a = 0;
|
||||
int b = 0;
|
||||
int[] nums = new int[10000];
|
||||
ListNode node = new ListNode(0);
|
||||
ListNode node = new(0);
|
||||
// 循环中的变量占用 O(1) 空间
|
||||
for (int i = 0; i < n; i++) {
|
||||
int c = 0;
|
||||
}
|
||||
// 循环中的函数占用 O(1) 空间
|
||||
for (int i = 0; i < n; i++) {
|
||||
function();
|
||||
Function();
|
||||
}
|
||||
}
|
||||
```
|
||||
@ -1115,7 +1115,7 @@ $$
|
||||
|
||||
```csharp title="space_complexity.cs"
|
||||
/* 线性阶 */
|
||||
void linear(int n) {
|
||||
void Linear(int n) {
|
||||
// 长度为 n 的数组占用 O(n) 空间
|
||||
int[] nums = new int[n];
|
||||
// 长度为 n 的列表占用 O(n) 空间
|
||||
@ -1361,10 +1361,10 @@ $$
|
||||
|
||||
```csharp title="space_complexity.cs"
|
||||
/* 线性阶(递归实现) */
|
||||
void linearRecur(int n) {
|
||||
void LinearRecur(int n) {
|
||||
Console.WriteLine("递归 n = " + n);
|
||||
if (n == 1) return;
|
||||
linearRecur(n - 1);
|
||||
LinearRecur(n - 1);
|
||||
}
|
||||
```
|
||||
|
||||
@ -1518,7 +1518,7 @@ $$
|
||||
|
||||
```csharp title="space_complexity.cs"
|
||||
/* 平方阶 */
|
||||
void quadratic(int n) {
|
||||
void Quadratic(int n) {
|
||||
// 矩阵占用 O(n^2) 空间
|
||||
int[,] numMatrix = new int[n, n];
|
||||
// 二维列表占用 O(n^2) 空间
|
||||
@ -1726,11 +1726,11 @@ $$
|
||||
|
||||
```csharp title="space_complexity.cs"
|
||||
/* 平方阶(递归实现) */
|
||||
int quadraticRecur(int n) {
|
||||
int QuadraticRecur(int n) {
|
||||
if (n <= 0) return 0;
|
||||
int[] nums = new int[n];
|
||||
Console.WriteLine("递归 n = " + n + " 中的 nums 长度 = " + nums.Length);
|
||||
return quadraticRecur(n - 1);
|
||||
return QuadraticRecur(n - 1);
|
||||
}
|
||||
```
|
||||
|
||||
@ -1893,11 +1893,12 @@ $$
|
||||
|
||||
```csharp title="space_complexity.cs"
|
||||
/* 指数阶(建立满二叉树) */
|
||||
TreeNode? buildTree(int n) {
|
||||
TreeNode? BuildTree(int n) {
|
||||
if (n == 0) return null;
|
||||
TreeNode root = new TreeNode(0);
|
||||
root.left = buildTree(n - 1);
|
||||
root.right = buildTree(n - 1);
|
||||
TreeNode root = new(0) {
|
||||
left = BuildTree(n - 1),
|
||||
right = BuildTree(n - 1)
|
||||
};
|
||||
return root;
|
||||
}
|
||||
```
|
||||
|
||||
@ -59,7 +59,7 @@ comments: true
|
||||
|
||||
```csharp title=""
|
||||
// 在某运行平台下
|
||||
void algorithm(int n) {
|
||||
void Algorithm(int n) {
|
||||
int a = 2; // 1 ns
|
||||
a = a + 1; // 1 ns
|
||||
a = a * 2; // 10 ns
|
||||
@ -257,17 +257,17 @@ $$
|
||||
|
||||
```csharp title=""
|
||||
// 算法 A 的时间复杂度:常数阶
|
||||
void algorithm_A(int n) {
|
||||
void AlgorithmA(int n) {
|
||||
Console.WriteLine(0);
|
||||
}
|
||||
// 算法 B 的时间复杂度:线性阶
|
||||
void algorithm_B(int n) {
|
||||
void AlgorithmB(int n) {
|
||||
for (int i = 0; i < n; i++) {
|
||||
Console.WriteLine(0);
|
||||
}
|
||||
}
|
||||
// 算法 C 的时间复杂度:常数阶
|
||||
void algorithm_C(int n) {
|
||||
void AlgorithmC(int n) {
|
||||
for (int i = 0; i < 1000000; i++) {
|
||||
Console.WriteLine(0);
|
||||
}
|
||||
@ -493,7 +493,7 @@ $$
|
||||
=== "C#"
|
||||
|
||||
```csharp title=""
|
||||
void algorithm(int n) {
|
||||
void Algorithm(int n) {
|
||||
int a = 1; // +1
|
||||
a = a + 1; // +1
|
||||
a = a * 2; // +1
|
||||
@ -703,7 +703,7 @@ $T(n)$ 是一次函数,说明其运行时间的增长趋势是线性的,因
|
||||
=== "C#"
|
||||
|
||||
```csharp title=""
|
||||
void algorithm(int n) {
|
||||
void Algorithm(int n) {
|
||||
int a = 1; // +0(技巧 1)
|
||||
a = a + n; // +0(技巧 1)
|
||||
// +n(技巧 2)
|
||||
@ -953,7 +953,7 @@ $$
|
||||
|
||||
```csharp title="time_complexity.cs"
|
||||
/* 常数阶 */
|
||||
int constant(int n) {
|
||||
int Constant(int n) {
|
||||
int count = 0;
|
||||
int size = 100000;
|
||||
for (int i = 0; i < size; i++)
|
||||
@ -1117,7 +1117,7 @@ $$
|
||||
|
||||
```csharp title="time_complexity.cs"
|
||||
/* 线性阶 */
|
||||
int linear(int n) {
|
||||
int Linear(int n) {
|
||||
int count = 0;
|
||||
for (int i = 0; i < n; i++)
|
||||
count++;
|
||||
@ -1272,7 +1272,7 @@ $$
|
||||
|
||||
```csharp title="time_complexity.cs"
|
||||
/* 线性阶(遍历数组) */
|
||||
int arrayTraversal(int[] nums) {
|
||||
int ArrayTraversal(int[] nums) {
|
||||
int count = 0;
|
||||
// 循环次数与数组长度成正比
|
||||
foreach (int num in nums) {
|
||||
@ -1449,7 +1449,7 @@ $$
|
||||
|
||||
```csharp title="time_complexity.cs"
|
||||
/* 平方阶 */
|
||||
int quadratic(int n) {
|
||||
int Quadratic(int n) {
|
||||
int count = 0;
|
||||
// 循环次数与数组长度成平方关系
|
||||
for (int i = 0; i < n; i++) {
|
||||
@ -1668,7 +1668,7 @@ $$
|
||||
|
||||
```csharp title="time_complexity.cs"
|
||||
/* 平方阶(冒泡排序) */
|
||||
int bubbleSort(int[] nums) {
|
||||
int BubbleSort(int[] nums) {
|
||||
int count = 0; // 计数器
|
||||
// 外循环:未排序区间为 [0, i]
|
||||
for (int i = nums.Length - 1; i > 0; i--) {
|
||||
@ -1933,7 +1933,7 @@ $$
|
||||
|
||||
```csharp title="time_complexity.cs"
|
||||
/* 指数阶(循环实现) */
|
||||
int exponential(int n) {
|
||||
int Exponential(int n) {
|
||||
int count = 0, bas = 1;
|
||||
// 细胞每轮一分为二,形成数列 1, 2, 4, 8, ..., 2^(n-1)
|
||||
for (int i = 0; i < n; i++) {
|
||||
@ -2141,9 +2141,9 @@ $$
|
||||
|
||||
```csharp title="time_complexity.cs"
|
||||
/* 指数阶(递归实现) */
|
||||
int expRecur(int n) {
|
||||
int ExpRecur(int n) {
|
||||
if (n == 1) return 1;
|
||||
return expRecur(n - 1) + expRecur(n - 1) + 1;
|
||||
return ExpRecur(n - 1) + ExpRecur(n - 1) + 1;
|
||||
}
|
||||
```
|
||||
|
||||
@ -2286,7 +2286,7 @@ $$
|
||||
|
||||
```csharp title="time_complexity.cs"
|
||||
/* 对数阶(循环实现) */
|
||||
int logarithmic(float n) {
|
||||
int Logarithmic(float n) {
|
||||
int count = 0;
|
||||
while (n > 1) {
|
||||
n = n / 2;
|
||||
@ -2453,9 +2453,9 @@ $$
|
||||
|
||||
```csharp title="time_complexity.cs"
|
||||
/* 对数阶(递归实现) */
|
||||
int logRecur(float n) {
|
||||
int LogRecur(float n) {
|
||||
if (n <= 1) return 0;
|
||||
return logRecur(n / 2) + 1;
|
||||
return LogRecur(n / 2) + 1;
|
||||
}
|
||||
```
|
||||
|
||||
@ -2610,10 +2610,10 @@ $$
|
||||
|
||||
```csharp title="time_complexity.cs"
|
||||
/* 线性对数阶 */
|
||||
int linearLogRecur(float n) {
|
||||
int LinearLogRecur(float n) {
|
||||
if (n <= 1) return 1;
|
||||
int count = linearLogRecur(n / 2) +
|
||||
linearLogRecur(n / 2);
|
||||
int count = LinearLogRecur(n / 2) +
|
||||
LinearLogRecur(n / 2);
|
||||
for (int i = 0; i < n; i++) {
|
||||
count++;
|
||||
}
|
||||
@ -2812,12 +2812,12 @@ $$
|
||||
|
||||
```csharp title="time_complexity.cs"
|
||||
/* 阶乘阶(递归实现) */
|
||||
int factorialRecur(int n) {
|
||||
int FactorialRecur(int n) {
|
||||
if (n == 0) return 1;
|
||||
int count = 0;
|
||||
// 从 1 个分裂出 n 个
|
||||
for (int i = 0; i < n; i++) {
|
||||
count += factorialRecur(n - 1);
|
||||
count += FactorialRecur(n - 1);
|
||||
}
|
||||
return count;
|
||||
}
|
||||
@ -3051,7 +3051,7 @@ $$
|
||||
|
||||
```csharp title="worst_best_time_complexity.cs"
|
||||
/* 生成一个数组,元素为 { 1, 2, ..., n },顺序被打乱 */
|
||||
int[] randomNumbers(int n) {
|
||||
int[] RandomNumbers(int n) {
|
||||
int[] nums = new int[n];
|
||||
// 生成数组 nums = { 1, 2, 3, ..., n }
|
||||
for (int i = 0; i < n; i++) {
|
||||
@ -3070,7 +3070,7 @@ $$
|
||||
}
|
||||
|
||||
/* 查找数组 nums 中数字 1 所在索引 */
|
||||
int findOne(int[] nums) {
|
||||
int FindOne(int[] nums) {
|
||||
for (int i = 0; i < nums.Length; i++) {
|
||||
// 当元素 1 在数组头部时,达到最佳时间复杂度 O(1)
|
||||
// 当元素 1 在数组尾部时,达到最差时间复杂度 O(n)
|
||||
|
||||
@ -139,7 +139,7 @@ comments: true
|
||||
|
||||
```csharp title="binary_search_recur.cs"
|
||||
/* 二分查找:问题 f(i, j) */
|
||||
int dfs(int[] nums, int target, int i, int j) {
|
||||
int Dfs(int[] nums, int target, int i, int j) {
|
||||
// 若区间为空,代表无目标元素,则返回 -1
|
||||
if (i > j) {
|
||||
return -1;
|
||||
@ -148,10 +148,10 @@ comments: true
|
||||
int m = (i + j) / 2;
|
||||
if (nums[m] < target) {
|
||||
// 递归子问题 f(m+1, j)
|
||||
return dfs(nums, target, m + 1, j);
|
||||
return Dfs(nums, target, m + 1, j);
|
||||
} else if (nums[m] > target) {
|
||||
// 递归子问题 f(i, m-1)
|
||||
return dfs(nums, target, i, m - 1);
|
||||
return Dfs(nums, target, i, m - 1);
|
||||
} else {
|
||||
// 找到目标元素,返回其索引
|
||||
return m;
|
||||
@ -159,10 +159,10 @@ comments: true
|
||||
}
|
||||
|
||||
/* 二分查找 */
|
||||
int binarySearch(int[] nums, int target) {
|
||||
int BinarySearch(int[] nums, int target) {
|
||||
int n = nums.Length;
|
||||
// 求解问题 f(0, n-1)
|
||||
return dfs(nums, target, 0, n - 1);
|
||||
return Dfs(nums, target, 0, n - 1);
|
||||
}
|
||||
```
|
||||
|
||||
@ -354,9 +354,32 @@ comments: true
|
||||
=== "C"
|
||||
|
||||
```c title="binary_search_recur.c"
|
||||
[class]{}-[func]{dfs}
|
||||
/* 二分查找:问题 f(i, j) */
|
||||
int dfs(int nums[], int target, int i, int j) {
|
||||
// 若区间为空,代表无目标元素,则返回 -1
|
||||
if (i > j) {
|
||||
return -1;
|
||||
}
|
||||
// 计算中点索引 m
|
||||
int m = (i + j) / 2;
|
||||
if (nums[m] < target) {
|
||||
// 递归子问题 f(m+1, j)
|
||||
return dfs(nums, target, m + 1, j);
|
||||
} else if (nums[m] > target) {
|
||||
// 递归子问题 f(i, m-1)
|
||||
return dfs(nums, target, i, m - 1);
|
||||
} else {
|
||||
// 找到目标元素,返回其索引
|
||||
return m;
|
||||
}
|
||||
}
|
||||
|
||||
[class]{}-[func]{binarySearch}
|
||||
/* 二分查找 */
|
||||
int binarySearch(int nums[], int target, int numsSize) {
|
||||
int n = numsSize;
|
||||
// 求解问题 f(0, n-1)
|
||||
return dfs(nums, target, 0, n - 1);
|
||||
}
|
||||
```
|
||||
|
||||
=== "Zig"
|
||||
|
||||
@ -172,30 +172,30 @@ comments: true
|
||||
|
||||
```csharp title="build_tree.cs"
|
||||
/* 构建二叉树:分治 */
|
||||
TreeNode dfs(int[] preorder, Dictionary<int, int> inorderMap, int i, int l, int r) {
|
||||
TreeNode Dfs(int[] preorder, Dictionary<int, int> inorderMap, int i, int l, int r) {
|
||||
// 子树区间为空时终止
|
||||
if (r - l < 0)
|
||||
return null;
|
||||
// 初始化根节点
|
||||
TreeNode root = new TreeNode(preorder[i]);
|
||||
TreeNode root = new(preorder[i]);
|
||||
// 查询 m ,从而划分左右子树
|
||||
int m = inorderMap[preorder[i]];
|
||||
// 子问题:构建左子树
|
||||
root.left = dfs(preorder, inorderMap, i + 1, l, m - 1);
|
||||
root.left = Dfs(preorder, inorderMap, i + 1, l, m - 1);
|
||||
// 子问题:构建右子树
|
||||
root.right = dfs(preorder, inorderMap, i + 1 + m - l, m + 1, r);
|
||||
root.right = Dfs(preorder, inorderMap, i + 1 + m - l, m + 1, r);
|
||||
// 返回根节点
|
||||
return root;
|
||||
}
|
||||
|
||||
/* 构建二叉树 */
|
||||
TreeNode buildTree(int[] preorder, int[] inorder) {
|
||||
TreeNode BuildTree(int[] preorder, int[] inorder) {
|
||||
// 初始化哈希表,存储 inorder 元素到索引的映射
|
||||
Dictionary<int, int> inorderMap = new Dictionary<int, int>();
|
||||
Dictionary<int, int> inorderMap = new();
|
||||
for (int i = 0; i < inorder.Length; i++) {
|
||||
inorderMap.TryAdd(inorder[i], i);
|
||||
}
|
||||
TreeNode root = dfs(preorder, inorderMap, 0, 0, inorder.Length - 1);
|
||||
TreeNode root = Dfs(preorder, inorderMap, 0, 0, inorder.Length - 1);
|
||||
return root;
|
||||
}
|
||||
```
|
||||
|
||||
@ -199,7 +199,7 @@ comments: true
|
||||
|
||||
```csharp title="hanota.cs"
|
||||
/* 移动一个圆盘 */
|
||||
void move(List<int> src, List<int> tar) {
|
||||
void Move(List<int> src, List<int> tar) {
|
||||
// 从 src 顶部拿出一个圆盘
|
||||
int pan = src[^1];
|
||||
src.RemoveAt(src.Count - 1);
|
||||
@ -208,25 +208,25 @@ comments: true
|
||||
}
|
||||
|
||||
/* 求解汉诺塔:问题 f(i) */
|
||||
void dfs(int i, List<int> src, List<int> buf, List<int> tar) {
|
||||
void Dfs(int i, List<int> src, List<int> buf, List<int> tar) {
|
||||
// 若 src 只剩下一个圆盘,则直接将其移到 tar
|
||||
if (i == 1) {
|
||||
move(src, tar);
|
||||
Move(src, tar);
|
||||
return;
|
||||
}
|
||||
// 子问题 f(i-1) :将 src 顶部 i-1 个圆盘借助 tar 移到 buf
|
||||
dfs(i - 1, src, tar, buf);
|
||||
Dfs(i - 1, src, tar, buf);
|
||||
// 子问题 f(1) :将 src 剩余一个圆盘移到 tar
|
||||
move(src, tar);
|
||||
Move(src, tar);
|
||||
// 子问题 f(i-1) :将 buf 顶部 i-1 个圆盘借助 src 移到 tar
|
||||
dfs(i - 1, buf, src, tar);
|
||||
Dfs(i - 1, buf, src, tar);
|
||||
}
|
||||
|
||||
/* 求解汉诺塔 */
|
||||
void solveHanota(List<int> A, List<int> B, List<int> C) {
|
||||
void SolveHanota(List<int> A, List<int> B, List<int> C) {
|
||||
int n = A.Count;
|
||||
// 将 A 顶部 n 个圆盘借助 B 移到 C
|
||||
dfs(n, A, B, C);
|
||||
Dfs(n, A, B, C);
|
||||
}
|
||||
```
|
||||
|
||||
@ -440,11 +440,38 @@ comments: true
|
||||
=== "C"
|
||||
|
||||
```c title="hanota.c"
|
||||
[class]{}-[func]{move}
|
||||
/* 移动一个圆盘 */
|
||||
void move(vector *src, vector *tar) {
|
||||
// 从 src 顶部拿出一个圆盘
|
||||
int *panTemp = vectorBack(src);
|
||||
int *pan = malloc(sizeof(int));
|
||||
*pan = *panTemp;
|
||||
vectorPopback(src);
|
||||
// 将圆盘放入 tar 顶部
|
||||
vectorPushback(tar, pan, sizeof(int));
|
||||
}
|
||||
|
||||
[class]{}-[func]{dfs}
|
||||
/* 求解汉诺塔:问题 f(i) */
|
||||
void dfs(int i, vector *src, vector *buf, vector *tar) {
|
||||
// 若 src 只剩下一个圆盘,则直接将其移到 tar
|
||||
if (i == 1) {
|
||||
move(src, tar);
|
||||
return;
|
||||
}
|
||||
// 子问题 f(i-1) :将 src 顶部 i-1 个圆盘借助 tar 移到 buf
|
||||
dfs(i - 1, src, tar, buf);
|
||||
// 子问题 f(1) :将 src 剩余一个圆盘移到 tar
|
||||
move(src, tar);
|
||||
// 子问题 f(i-1) :将 buf 顶部 i-1 个圆盘借助 src 移到 tar
|
||||
dfs(i - 1, buf, src, tar);
|
||||
}
|
||||
|
||||
[class]{}-[func]{solveHanota}
|
||||
/* 求解汉诺塔 */
|
||||
void solveHanota(vector *A, vector *B, vector *C) {
|
||||
int n = A->size;
|
||||
// 将 A 顶部 n 个圆盘借助 B 移到 C
|
||||
dfs(n, A, B, C);
|
||||
}
|
||||
```
|
||||
|
||||
=== "Zig"
|
||||
|
||||
@ -104,7 +104,7 @@ $$
|
||||
|
||||
```csharp title="min_cost_climbing_stairs_dp.cs"
|
||||
/* 爬楼梯最小代价:动态规划 */
|
||||
int minCostClimbingStairsDP(int[] cost) {
|
||||
int MinCostClimbingStairsDP(int[] cost) {
|
||||
int n = cost.Length - 1;
|
||||
if (n == 1 || n == 2)
|
||||
return cost[n];
|
||||
@ -130,6 +130,12 @@ $$
|
||||
if n == 1 || n == 2 {
|
||||
return cost[n]
|
||||
}
|
||||
min := func(a, b int) int {
|
||||
if a < b {
|
||||
return a
|
||||
}
|
||||
return b
|
||||
}
|
||||
// 初始化 dp 表,用于存储子问题的解
|
||||
dp := make([]int, n+1)
|
||||
// 初始状态:预设最小子问题的解
|
||||
@ -137,7 +143,7 @@ $$
|
||||
dp[2] = cost[2]
|
||||
// 状态转移:从较小子问题逐步求解较大子问题
|
||||
for i := 3; i <= n; i++ {
|
||||
dp[i] = int(math.Min(float64(dp[i-1]), float64(dp[i-2]+cost[i])))
|
||||
dp[i] = min(dp[i-1], dp[i-2]) + cost[i]
|
||||
}
|
||||
return dp[n]
|
||||
}
|
||||
@ -252,7 +258,22 @@ $$
|
||||
=== "C"
|
||||
|
||||
```c title="min_cost_climbing_stairs_dp.c"
|
||||
[class]{}-[func]{minCostClimbingStairsDP}
|
||||
/* 爬楼梯最小代价:动态规划 */
|
||||
int minCostClimbingStairsDP(int cost[], int costSize) {
|
||||
int n = costSize - 1;
|
||||
if (n == 1 || n == 2)
|
||||
return cost[n];
|
||||
// 初始化 dp 表,用于存储子问题的解
|
||||
int dp[n + 1];
|
||||
// 初始状态:预设最小子问题的解
|
||||
dp[1] = cost[1];
|
||||
dp[2] = cost[2];
|
||||
// 状态转移:从较小子问题逐步求解较大子问题
|
||||
for (int i = 3; i <= n; i++) {
|
||||
dp[i] = min(dp[i - 1], dp[i - 2]) + cost[i];
|
||||
}
|
||||
return dp[n];
|
||||
}
|
||||
```
|
||||
|
||||
=== "Zig"
|
||||
@ -339,7 +360,7 @@ $$
|
||||
|
||||
```csharp title="min_cost_climbing_stairs_dp.cs"
|
||||
/* 爬楼梯最小代价:空间优化后的动态规划 */
|
||||
int minCostClimbingStairsDPComp(int[] cost) {
|
||||
int MinCostClimbingStairsDPComp(int[] cost) {
|
||||
int n = cost.Length - 1;
|
||||
if (n == 1 || n == 2)
|
||||
return cost[n];
|
||||
@ -362,12 +383,18 @@ $$
|
||||
if n == 1 || n == 2 {
|
||||
return cost[n]
|
||||
}
|
||||
min := func(a, b int) int {
|
||||
if a < b {
|
||||
return a
|
||||
}
|
||||
return b
|
||||
}
|
||||
// 初始状态:预设最小子问题的解
|
||||
a, b := cost[1], cost[2]
|
||||
// 状态转移:从较小子问题逐步求解较大子问题
|
||||
for i := 3; i <= n; i++ {
|
||||
tmp := b
|
||||
b = int(math.Min(float64(a), float64(tmp+cost[i])))
|
||||
b = min(a, tmp) + cost[i]
|
||||
a = tmp
|
||||
}
|
||||
return b
|
||||
@ -468,7 +495,19 @@ $$
|
||||
=== "C"
|
||||
|
||||
```c title="min_cost_climbing_stairs_dp.c"
|
||||
[class]{}-[func]{minCostClimbingStairsDPComp}
|
||||
/* 爬楼梯最小代价:空间优化后的动态规划 */
|
||||
int minCostClimbingStairsDPComp(int cost[], int costSize) {
|
||||
int n = costSize - 1;
|
||||
if (n == 1 || n == 2)
|
||||
return cost[n];
|
||||
int a = cost[1], b = cost[2];
|
||||
for (int i = 3; i <= n; i++) {
|
||||
int tmp = b;
|
||||
b = min(a, tmp) + cost[i];
|
||||
a = tmp;
|
||||
}
|
||||
return b;
|
||||
}
|
||||
```
|
||||
|
||||
=== "Zig"
|
||||
@ -605,7 +644,7 @@ $$
|
||||
|
||||
```csharp title="climbing_stairs_constraint_dp.cs"
|
||||
/* 带约束爬楼梯:动态规划 */
|
||||
int climbingStairsConstraintDP(int n) {
|
||||
int ClimbingStairsConstraintDP(int n) {
|
||||
if (n == 1 || n == 2) {
|
||||
return 1;
|
||||
}
|
||||
|
||||
@ -174,7 +174,7 @@ $$
|
||||
|
||||
```csharp title="min_path_sum.cs"
|
||||
/* 最小路径和:暴力搜索 */
|
||||
int minPathSumDFS(int[][] grid, int i, int j) {
|
||||
int MinPathSumDFS(int[][] grid, int i, int j) {
|
||||
// 若为左上角单元格,则终止搜索
|
||||
if (i == 0 && j == 0) {
|
||||
return grid[0][0];
|
||||
@ -184,8 +184,8 @@ $$
|
||||
return int.MaxValue;
|
||||
}
|
||||
// 计算从左上角到 (i-1, j) 和 (i, j-1) 的最小路径代价
|
||||
int left = minPathSumDFS(grid, i - 1, j);
|
||||
int up = minPathSumDFS(grid, i, j - 1);
|
||||
int left = MinPathSumDFS(grid, i - 1, j);
|
||||
int up = MinPathSumDFS(grid, i, j - 1);
|
||||
// 返回从左上角到 (i, j) 的最小路径代价
|
||||
return Math.Min(left, up) + grid[i][j];
|
||||
}
|
||||
@ -325,7 +325,22 @@ $$
|
||||
=== "C"
|
||||
|
||||
```c title="min_path_sum.c"
|
||||
[class]{}-[func]{minPathSumDFS}
|
||||
/* 最小路径和:暴力搜索 */
|
||||
int minPathSumDFS(int gridCols, int grid[][gridCols], int i, int j) {
|
||||
// 若为左上角单元格,则终止搜索
|
||||
if (i == 0 && j == 0) {
|
||||
return grid[0][0];
|
||||
}
|
||||
// 若行列索引越界,则返回 +∞ 代价
|
||||
if (i < 0 || j < 0) {
|
||||
return INT_MAX;
|
||||
}
|
||||
// 计算从左上角到 (i-1, j) 和 (i, j-1) 的最小路径代价
|
||||
int left = minPathSumDFS(gridCols, grid, i - 1, j);
|
||||
int up = minPathSumDFS(gridCols, grid, i, j - 1);
|
||||
// 返回从左上角到 (i, j) 的最小路径代价
|
||||
return min(left, up) != INT_MAX ? min(left, up) + grid[i][j] : INT_MAX;
|
||||
}
|
||||
```
|
||||
|
||||
=== "Zig"
|
||||
@ -443,7 +458,7 @@ $$
|
||||
|
||||
```csharp title="min_path_sum.cs"
|
||||
/* 最小路径和:记忆化搜索 */
|
||||
int minPathSumDFSMem(int[][] grid, int[][] mem, int i, int j) {
|
||||
int MinPathSumDFSMem(int[][] grid, int[][] mem, int i, int j) {
|
||||
// 若为左上角单元格,则终止搜索
|
||||
if (i == 0 && j == 0) {
|
||||
return grid[0][0];
|
||||
@ -457,8 +472,8 @@ $$
|
||||
return mem[i][j];
|
||||
}
|
||||
// 左边和上边单元格的最小路径代价
|
||||
int left = minPathSumDFSMem(grid, mem, i - 1, j);
|
||||
int up = minPathSumDFSMem(grid, mem, i, j - 1);
|
||||
int left = MinPathSumDFSMem(grid, mem, i - 1, j);
|
||||
int up = MinPathSumDFSMem(grid, mem, i, j - 1);
|
||||
// 记录并返回左上角到 (i, j) 的最小路径代价
|
||||
mem[i][j] = Math.Min(left, up) + grid[i][j];
|
||||
return mem[i][j];
|
||||
@ -630,7 +645,27 @@ $$
|
||||
=== "C"
|
||||
|
||||
```c title="min_path_sum.c"
|
||||
[class]{}-[func]{minPathSumDFSMem}
|
||||
/* 最小路径和:记忆化搜索 */
|
||||
int minPathSumDFSMem(int gridCols, int grid[][gridCols], int mem[][gridCols], int i, int j) {
|
||||
// 若为左上角单元格,则终止搜索
|
||||
if (i == 0 && j == 0) {
|
||||
return grid[0][0];
|
||||
}
|
||||
// 若行列索引越界,则返回 +∞ 代价
|
||||
if (i < 0 || j < 0) {
|
||||
return INT_MAX;
|
||||
}
|
||||
// 若已有记录,则直接返回
|
||||
if (mem[i][j] != -1) {
|
||||
return mem[i][j];
|
||||
}
|
||||
// 左边和上边单元格的最小路径代价
|
||||
int left = minPathSumDFSMem(gridCols, grid, mem, i - 1, j);
|
||||
int up = minPathSumDFSMem(gridCols, grid, mem, i, j - 1);
|
||||
// 记录并返回左上角到 (i, j) 的最小路径代价
|
||||
mem[i][j] = min(left, up) != INT_MAX ? min(left, up) + grid[i][j] : INT_MAX;
|
||||
return mem[i][j];
|
||||
}
|
||||
```
|
||||
|
||||
=== "Zig"
|
||||
@ -750,7 +785,7 @@ $$
|
||||
|
||||
```csharp title="min_path_sum.cs"
|
||||
/* 最小路径和:动态规划 */
|
||||
int minPathSumDP(int[][] grid) {
|
||||
int MinPathSumDP(int[][] grid) {
|
||||
int n = grid.Length, m = grid[0].Length;
|
||||
// 初始化 dp 表
|
||||
int[,] dp = new int[n, m];
|
||||
@ -948,7 +983,27 @@ $$
|
||||
=== "C"
|
||||
|
||||
```c title="min_path_sum.c"
|
||||
[class]{}-[func]{minPathSumDP}
|
||||
/* 最小路径和:动态规划 */
|
||||
int minPathSumDP(int gridCols, int grid[][gridCols], int n, int m) {
|
||||
// 初始化 dp 表
|
||||
int dp[n][m];
|
||||
dp[0][0] = grid[0][0];
|
||||
// 状态转移:首行
|
||||
for (int j = 1; j < m; j++) {
|
||||
dp[0][j] = dp[0][j - 1] + grid[0][j];
|
||||
}
|
||||
// 状态转移:首列
|
||||
for (int i = 1; i < n; i++) {
|
||||
dp[i][0] = dp[i - 1][0] + grid[i][0];
|
||||
}
|
||||
// 状态转移:其余行列
|
||||
for (int i = 1; i < n; i++) {
|
||||
for (int j = 1; j < m; j++) {
|
||||
dp[i][j] = min(dp[i][j - 1], dp[i - 1][j]) + grid[i][j];
|
||||
}
|
||||
}
|
||||
return dp[n - 1][m - 1];
|
||||
}
|
||||
```
|
||||
|
||||
=== "Zig"
|
||||
@ -1105,7 +1160,7 @@ $$
|
||||
|
||||
```csharp title="min_path_sum.cs"
|
||||
/* 最小路径和:空间优化后的动态规划 */
|
||||
int minPathSumDPComp(int[][] grid) {
|
||||
int MinPathSumDPComp(int[][] grid) {
|
||||
int n = grid.Length, m = grid[0].Length;
|
||||
// 初始化 dp 表
|
||||
int[] dp = new int[m];
|
||||
@ -1288,7 +1343,26 @@ $$
|
||||
=== "C"
|
||||
|
||||
```c title="min_path_sum.c"
|
||||
[class]{}-[func]{minPathSumDPComp}
|
||||
/* 最小路径和:空间优化后的动态规划 */
|
||||
int minPathSumDPComp(int gridCols, int grid[][gridCols], int n, int m) {
|
||||
// 初始化 dp 表
|
||||
int dp[m];
|
||||
// 状态转移:首行
|
||||
dp[0] = grid[0][0];
|
||||
for (int j = 1; j < m; j++) {
|
||||
dp[j] = dp[j - 1] + grid[0][j];
|
||||
}
|
||||
// 状态转移:其余行
|
||||
for (int i = 1; i < n; i++) {
|
||||
// 状态转移:首列
|
||||
dp[0] = dp[0] + grid[i][0];
|
||||
// 状态转移:其余列
|
||||
for (int j = 1; j < m; j++) {
|
||||
dp[j] = min(dp[j - 1], dp[j]) + grid[i][j];
|
||||
}
|
||||
}
|
||||
return dp[m - 1];
|
||||
}
|
||||
```
|
||||
|
||||
=== "Zig"
|
||||
|
||||
@ -165,7 +165,7 @@ $$
|
||||
|
||||
```csharp title="edit_distance.cs"
|
||||
/* 编辑距离:动态规划 */
|
||||
int editDistanceDP(string s, string t) {
|
||||
int EditDistanceDP(string s, string t) {
|
||||
int n = s.Length, m = t.Length;
|
||||
int[,] dp = new int[n + 1, m + 1];
|
||||
// 状态转移:首行首列
|
||||
@ -578,7 +578,7 @@ $$
|
||||
|
||||
```csharp title="edit_distance.cs"
|
||||
/* 编辑距离:空间优化后的动态规划 */
|
||||
int editDistanceDPComp(string s, string t) {
|
||||
int EditDistanceDPComp(string s, string t) {
|
||||
int n = s.Length, m = t.Length;
|
||||
int[] dp = new int[m + 1];
|
||||
// 状态转移:首行
|
||||
|
||||
@ -109,7 +109,7 @@ comments: true
|
||||
|
||||
```csharp title="climbing_stairs_backtrack.cs"
|
||||
/* 回溯 */
|
||||
void backtrack(List<int> choices, int state, int n, List<int> res) {
|
||||
void Backtrack(List<int> choices, int state, int n, List<int> res) {
|
||||
// 当爬到第 n 阶时,方案数量加 1
|
||||
if (state == n)
|
||||
res[0]++;
|
||||
@ -119,17 +119,17 @@ comments: true
|
||||
if (state + choice > n)
|
||||
break;
|
||||
// 尝试:做出选择,更新状态
|
||||
backtrack(choices, state + choice, n, res);
|
||||
Backtrack(choices, state + choice, n, res);
|
||||
// 回退
|
||||
}
|
||||
}
|
||||
|
||||
/* 爬楼梯:回溯 */
|
||||
int climbingStairsBacktrack(int n) {
|
||||
List<int> choices = new List<int> { 1, 2 }; // 可选择向上爬 1 或 2 阶
|
||||
int ClimbingStairsBacktrack(int n) {
|
||||
List<int> choices = new() { 1, 2 }; // 可选择向上爬 1 或 2 阶
|
||||
int state = 0; // 从第 0 阶开始爬
|
||||
List<int> res = new List<int> { 0 }; // 使用 res[0] 记录方案数量
|
||||
backtrack(choices, state, n, res);
|
||||
List<int> res = new() { 0 }; // 使用 res[0] 记录方案数量
|
||||
Backtrack(choices, state, n, res);
|
||||
return res[0];
|
||||
}
|
||||
```
|
||||
@ -472,18 +472,18 @@ $$
|
||||
|
||||
```csharp title="climbing_stairs_dfs.cs"
|
||||
/* 搜索 */
|
||||
int dfs(int i) {
|
||||
int Dfs(int i) {
|
||||
// 已知 dp[1] 和 dp[2] ,返回之
|
||||
if (i == 1 || i == 2)
|
||||
return i;
|
||||
// dp[i] = dp[i-1] + dp[i-2]
|
||||
int count = dfs(i - 1) + dfs(i - 2);
|
||||
int count = Dfs(i - 1) + Dfs(i - 2);
|
||||
return count;
|
||||
}
|
||||
|
||||
/* 爬楼梯:搜索 */
|
||||
int climbingStairsDFS(int n) {
|
||||
return dfs(n);
|
||||
int ClimbingStairsDFS(int n) {
|
||||
return Dfs(n);
|
||||
}
|
||||
```
|
||||
|
||||
@ -736,7 +736,7 @@ $$
|
||||
|
||||
```csharp title="climbing_stairs_dfs_mem.cs"
|
||||
/* 记忆化搜索 */
|
||||
int dfs(int i, int[] mem) {
|
||||
int Dfs(int i, int[] mem) {
|
||||
// 已知 dp[1] 和 dp[2] ,返回之
|
||||
if (i == 1 || i == 2)
|
||||
return i;
|
||||
@ -744,18 +744,18 @@ $$
|
||||
if (mem[i] != -1)
|
||||
return mem[i];
|
||||
// dp[i] = dp[i-1] + dp[i-2]
|
||||
int count = dfs(i - 1, mem) + dfs(i - 2, mem);
|
||||
int count = Dfs(i - 1, mem) + Dfs(i - 2, mem);
|
||||
// 记录 dp[i]
|
||||
mem[i] = count;
|
||||
return count;
|
||||
}
|
||||
|
||||
/* 爬楼梯:记忆化搜索 */
|
||||
int climbingStairsDFSMem(int n) {
|
||||
int ClimbingStairsDFSMem(int n) {
|
||||
// mem[i] 记录爬到第 i 阶的方案总数,-1 代表无记录
|
||||
int[] mem = new int[n + 1];
|
||||
Array.Fill(mem, -1);
|
||||
return dfs(n, mem);
|
||||
return Dfs(n, mem);
|
||||
}
|
||||
```
|
||||
|
||||
@ -1048,7 +1048,7 @@ $$
|
||||
|
||||
```csharp title="climbing_stairs_dp.cs"
|
||||
/* 爬楼梯:动态规划 */
|
||||
int climbingStairsDP(int n) {
|
||||
int ClimbingStairsDP(int n) {
|
||||
if (n == 1 || n == 2)
|
||||
return n;
|
||||
// 初始化 dp 表,用于存储子问题的解
|
||||
@ -1296,7 +1296,7 @@ $$
|
||||
|
||||
```csharp title="climbing_stairs_dp.cs"
|
||||
/* 爬楼梯:空间优化后的动态规划 */
|
||||
int climbingStairsDPComp(int n) {
|
||||
int ClimbingStairsDPComp(int n) {
|
||||
if (n == 1 || n == 2)
|
||||
return n;
|
||||
int a = 1, b = 2;
|
||||
|
||||
@ -126,18 +126,18 @@ $$
|
||||
|
||||
```csharp title="knapsack.cs"
|
||||
/* 0-1 背包:暴力搜索 */
|
||||
int knapsackDFS(int[] weight, int[] val, int i, int c) {
|
||||
int KnapsackDFS(int[] weight, int[] val, int i, int c) {
|
||||
// 若已选完所有物品或背包无容量,则返回价值 0
|
||||
if (i == 0 || c == 0) {
|
||||
return 0;
|
||||
}
|
||||
// 若超过背包容量,则只能不放入背包
|
||||
if (weight[i - 1] > c) {
|
||||
return knapsackDFS(weight, val, i - 1, c);
|
||||
return KnapsackDFS(weight, val, i - 1, c);
|
||||
}
|
||||
// 计算不放入和放入物品 i 的最大价值
|
||||
int no = knapsackDFS(weight, val, i - 1, c);
|
||||
int yes = knapsackDFS(weight, val, i - 1, c - weight[i - 1]) + val[i - 1];
|
||||
int no = KnapsackDFS(weight, val, i - 1, c);
|
||||
int yes = KnapsackDFS(weight, val, i - 1, c - weight[i - 1]) + val[i - 1];
|
||||
// 返回两种方案中价值更大的那一个
|
||||
return Math.Max(no, yes);
|
||||
}
|
||||
@ -277,7 +277,22 @@ $$
|
||||
=== "C"
|
||||
|
||||
```c title="knapsack.c"
|
||||
[class]{}-[func]{knapsackDFS}
|
||||
/* 0-1 背包:暴力搜索 */
|
||||
int knapsackDFS(int wgt[], int val[], int i, int c) {
|
||||
// 若已选完所有物品或背包无容量,则返回价值 0
|
||||
if (i == 0 || c == 0) {
|
||||
return 0;
|
||||
}
|
||||
// 若超过背包容量,则只能不放入背包
|
||||
if (wgt[i - 1] > c) {
|
||||
return knapsackDFS(wgt, val, i - 1, c);
|
||||
}
|
||||
// 计算不放入和放入物品 i 的最大价值
|
||||
int no = knapsackDFS(wgt, val, i - 1, c);
|
||||
int yes = knapsackDFS(wgt, val, i - 1, c - wgt[i - 1]) + val[i - 1];
|
||||
// 返回两种方案中价值更大的那一个
|
||||
return max(no, yes);
|
||||
}
|
||||
```
|
||||
|
||||
=== "Zig"
|
||||
@ -395,7 +410,7 @@ $$
|
||||
|
||||
```csharp title="knapsack.cs"
|
||||
/* 0-1 背包:记忆化搜索 */
|
||||
int knapsackDFSMem(int[] weight, int[] val, int[][] mem, int i, int c) {
|
||||
int KnapsackDFSMem(int[] weight, int[] val, int[][] mem, int i, int c) {
|
||||
// 若已选完所有物品或背包无容量,则返回价值 0
|
||||
if (i == 0 || c == 0) {
|
||||
return 0;
|
||||
@ -406,11 +421,11 @@ $$
|
||||
}
|
||||
// 若超过背包容量,则只能不放入背包
|
||||
if (weight[i - 1] > c) {
|
||||
return knapsackDFSMem(weight, val, mem, i - 1, c);
|
||||
return KnapsackDFSMem(weight, val, mem, i - 1, c);
|
||||
}
|
||||
// 计算不放入和放入物品 i 的最大价值
|
||||
int no = knapsackDFSMem(weight, val, mem, i - 1, c);
|
||||
int yes = knapsackDFSMem(weight, val, mem, i - 1, c - weight[i - 1]) + val[i - 1];
|
||||
int no = KnapsackDFSMem(weight, val, mem, i - 1, c);
|
||||
int yes = KnapsackDFSMem(weight, val, mem, i - 1, c - weight[i - 1]) + val[i - 1];
|
||||
// 记录并返回两种方案中价值更大的那一个
|
||||
mem[i][c] = Math.Max(no, yes);
|
||||
return mem[i][c];
|
||||
@ -590,7 +605,27 @@ $$
|
||||
=== "C"
|
||||
|
||||
```c title="knapsack.c"
|
||||
[class]{}-[func]{knapsackDFSMem}
|
||||
/* 0-1 背包:记忆化搜索 */
|
||||
int knapsackDFSMem(int wgt[], int val[], int memCols, int mem[][memCols], int i, int c) {
|
||||
// 若已选完所有物品或背包无容量,则返回价值 0
|
||||
if (i == 0 || c == 0) {
|
||||
return 0;
|
||||
}
|
||||
// 若已有记录,则直接返回
|
||||
if (mem[i][c] != -1) {
|
||||
return mem[i][c];
|
||||
}
|
||||
// 若超过背包容量,则只能不放入背包
|
||||
if (wgt[i - 1] > c) {
|
||||
return knapsackDFSMem(wgt, val, memCols, mem, i - 1, c);
|
||||
}
|
||||
// 计算不放入和放入物品 i 的最大价值
|
||||
int no = knapsackDFSMem(wgt, val, memCols, mem, i - 1, c);
|
||||
int yes = knapsackDFSMem(wgt, val, memCols, mem, i - 1, c - wgt[i - 1]) + val[i - 1];
|
||||
// 记录并返回两种方案中价值更大的那一个
|
||||
mem[i][c] = max(no, yes);
|
||||
return mem[i][c];
|
||||
}
|
||||
```
|
||||
|
||||
=== "Zig"
|
||||
@ -701,7 +736,7 @@ $$
|
||||
|
||||
```csharp title="knapsack.cs"
|
||||
/* 0-1 背包:动态规划 */
|
||||
int knapsackDP(int[] weight, int[] val, int cap) {
|
||||
int KnapsackDP(int[] weight, int[] val, int cap) {
|
||||
int n = weight.Length;
|
||||
// 初始化 dp 表
|
||||
int[,] dp = new int[n + 1, cap + 1];
|
||||
@ -885,7 +920,26 @@ $$
|
||||
=== "C"
|
||||
|
||||
```c title="knapsack.c"
|
||||
[class]{}-[func]{knapsackDP}
|
||||
/* 0-1 背包:动态规划 */
|
||||
int knapsackDP(int wgt[], int val[], int cap, int wgtSize) {
|
||||
int n = wgtSize;
|
||||
// 初始化 dp 表
|
||||
int dp[n + 1][cap + 1];
|
||||
memset(dp, 0, sizeof(dp));
|
||||
// 状态转移
|
||||
for (int i = 1; i <= n; i++) {
|
||||
for (int c = 1; c <= cap; c++) {
|
||||
if (wgt[i - 1] > c) {
|
||||
// 若超过背包容量,则不选物品 i
|
||||
dp[i][c] = dp[i - 1][c];
|
||||
} else {
|
||||
// 不选和选物品 i 这两种方案的较大值
|
||||
dp[i][c] = max(dp[i - 1][c], dp[i - 1][c - wgt[i - 1]] + val[i - 1]);
|
||||
}
|
||||
}
|
||||
}
|
||||
return dp[n][cap];
|
||||
}
|
||||
```
|
||||
|
||||
=== "Zig"
|
||||
@ -1060,7 +1114,7 @@ $$
|
||||
|
||||
```csharp title="knapsack.cs"
|
||||
/* 0-1 背包:空间优化后的动态规划 */
|
||||
int knapsackDPComp(int[] weight, int[] val, int cap) {
|
||||
int KnapsackDPComp(int[] weight, int[] val, int cap) {
|
||||
int n = weight.Length;
|
||||
// 初始化 dp 表
|
||||
int[] dp = new int[cap + 1];
|
||||
@ -1220,7 +1274,24 @@ $$
|
||||
=== "C"
|
||||
|
||||
```c title="knapsack.c"
|
||||
[class]{}-[func]{knapsackDPComp}
|
||||
/* 0-1 背包:空间优化后的动态规划 */
|
||||
int knapsackDPComp(int wgt[], int val[], int cap, int wgtSize) {
|
||||
int n = wgtSize;
|
||||
// 初始化 dp 表
|
||||
int dp[cap + 1];
|
||||
memset(dp, 0, sizeof(dp));
|
||||
// 状态转移
|
||||
for (int i = 1; i <= n; i++) {
|
||||
// 倒序遍历
|
||||
for (int c = cap; c >= 1; c--) {
|
||||
if (wgt[i - 1] <= c) {
|
||||
// 不选和选物品 i 这两种方案的较大值
|
||||
dp[c] = max(dp[c], dp[c - wgt[i - 1]] + val[i - 1]);
|
||||
}
|
||||
}
|
||||
}
|
||||
return dp[cap];
|
||||
}
|
||||
```
|
||||
|
||||
=== "Zig"
|
||||
|
||||
@ -110,7 +110,7 @@ $$
|
||||
|
||||
```csharp title="unbounded_knapsack.cs"
|
||||
/* 完全背包:动态规划 */
|
||||
int unboundedKnapsackDP(int[] wgt, int[] val, int cap) {
|
||||
int UnboundedKnapsackDP(int[] wgt, int[] val, int cap) {
|
||||
int n = wgt.Length;
|
||||
// 初始化 dp 表
|
||||
int[,] dp = new int[n + 1, cap + 1];
|
||||
@ -294,7 +294,26 @@ $$
|
||||
=== "C"
|
||||
|
||||
```c title="unbounded_knapsack.c"
|
||||
[class]{}-[func]{unboundedKnapsackDP}
|
||||
/* 完全背包:动态规划 */
|
||||
int unboundedKnapsackDP(int wgt[], int val[], int cap, int wgtSize) {
|
||||
int n = wgtSize;
|
||||
// 初始化 dp 表
|
||||
int dp[n + 1][cap + 1];
|
||||
memset(dp, 0, sizeof(dp));
|
||||
// 状态转移
|
||||
for (int i = 1; i <= n; i++) {
|
||||
for (int c = 1; c <= cap; c++) {
|
||||
if (wgt[i - 1] > c) {
|
||||
// 若超过背包容量,则不选物品 i
|
||||
dp[i][c] = dp[i - 1][c];
|
||||
} else {
|
||||
// 不选和选物品 i 这两种方案的较大值
|
||||
dp[i][c] = max(dp[i - 1][c], dp[i][c - wgt[i - 1]] + val[i - 1]);
|
||||
}
|
||||
}
|
||||
}
|
||||
return dp[n][cap];
|
||||
}
|
||||
```
|
||||
|
||||
=== "Zig"
|
||||
@ -422,7 +441,7 @@ $$
|
||||
|
||||
```csharp title="unbounded_knapsack.cs"
|
||||
/* 完全背包:空间优化后的动态规划 */
|
||||
int unboundedKnapsackDPComp(int[] wgt, int[] val, int cap) {
|
||||
int UnboundedKnapsackDPComp(int[] wgt, int[] val, int cap) {
|
||||
int n = wgt.Length;
|
||||
// 初始化 dp 表
|
||||
int[] dp = new int[cap + 1];
|
||||
@ -593,7 +612,26 @@ $$
|
||||
=== "C"
|
||||
|
||||
```c title="unbounded_knapsack.c"
|
||||
[class]{}-[func]{unboundedKnapsackDPComp}
|
||||
/* 完全背包:空间优化后的动态规划 */
|
||||
int unboundedKnapsackDPComp(int wgt[], int val[], int cap, int wgtSize) {
|
||||
int n = wgtSize;
|
||||
// 初始化 dp 表
|
||||
int dp[cap + 1];
|
||||
memset(dp, 0, sizeof(dp));
|
||||
// 状态转移
|
||||
for (int i = 1; i <= n; i++) {
|
||||
for (int c = 1; c <= cap; c++) {
|
||||
if (wgt[i - 1] > c) {
|
||||
// 若超过背包容量,则不选物品 i
|
||||
dp[c] = dp[c];
|
||||
} else {
|
||||
// 不选和选物品 i 这两种方案的较大值
|
||||
dp[c] = max(dp[c], dp[c - wgt[i - 1]] + val[i - 1]);
|
||||
}
|
||||
}
|
||||
}
|
||||
return dp[cap];
|
||||
}
|
||||
```
|
||||
|
||||
=== "Zig"
|
||||
@ -757,7 +795,7 @@ $$
|
||||
|
||||
```csharp title="coin_change.cs"
|
||||
/* 零钱兑换:动态规划 */
|
||||
int coinChangeDP(int[] coins, int amt) {
|
||||
int CoinChangeDP(int[] coins, int amt) {
|
||||
int n = coins.Length;
|
||||
int MAX = amt + 1;
|
||||
// 初始化 dp 表
|
||||
@ -969,7 +1007,31 @@ $$
|
||||
=== "C"
|
||||
|
||||
```c title="coin_change.c"
|
||||
[class]{}-[func]{coinChangeDP}
|
||||
/* 零钱兑换:动态规划 */
|
||||
int coinChangeDP(int coins[], int amt, int coinsSize) {
|
||||
int n = coinsSize;
|
||||
int MAX = amt + 1;
|
||||
// 初始化 dp 表
|
||||
int dp[n + 1][amt + 1];
|
||||
memset(dp, 0, sizeof(dp));
|
||||
// 状态转移:首行首列
|
||||
for (int a = 1; a <= amt; a++) {
|
||||
dp[0][a] = MAX;
|
||||
}
|
||||
// 状态转移:其余行列
|
||||
for (int i = 1; i <= n; i++) {
|
||||
for (int a = 1; a <= amt; a++) {
|
||||
if (coins[i - 1] > a) {
|
||||
// 若超过背包容量,则不选硬币 i
|
||||
dp[i][a] = dp[i - 1][a];
|
||||
} else {
|
||||
// 不选和选硬币 i 这两种方案的较小值
|
||||
dp[i][a] = min(dp[i - 1][a], dp[i][a - coins[i - 1]] + 1);
|
||||
}
|
||||
}
|
||||
}
|
||||
return dp[n][amt] != MAX ? dp[n][amt] : -1;
|
||||
}
|
||||
```
|
||||
|
||||
=== "Zig"
|
||||
@ -1138,7 +1200,7 @@ $$
|
||||
|
||||
```csharp title="coin_change.cs"
|
||||
/* 零钱兑换:空间优化后的动态规划 */
|
||||
int coinChangeDPComp(int[] coins, int amt) {
|
||||
int CoinChangeDPComp(int[] coins, int amt) {
|
||||
int n = coins.Length;
|
||||
int MAX = amt + 1;
|
||||
// 初始化 dp 表
|
||||
@ -1327,7 +1389,28 @@ $$
|
||||
=== "C"
|
||||
|
||||
```c title="coin_change.c"
|
||||
[class]{}-[func]{coinChangeDPComp}
|
||||
/* 零钱兑换:空间优化后的动态规划 */
|
||||
int coinChangeDPComp(int coins[], int amt, int coinsSize) {
|
||||
int n = coinsSize;
|
||||
int MAX = amt + 1;
|
||||
// 初始化 dp 表
|
||||
int dp[amt + 1];
|
||||
memset(dp, MAX, sizeof(dp));
|
||||
dp[0] = 0;
|
||||
// 状态转移
|
||||
for (int i = 1; i <= n; i++) {
|
||||
for (int a = 1; a <= amt; a++) {
|
||||
if (coins[i - 1] > a) {
|
||||
// 若超过背包容量,则不选硬币 i
|
||||
dp[a] = dp[a];
|
||||
} else {
|
||||
// 不选和选硬币 i 这两种方案的较小值
|
||||
dp[a] = min(dp[a], dp[a - coins[i - 1]] + 1);
|
||||
}
|
||||
}
|
||||
}
|
||||
return dp[amt] != MAX ? dp[amt] : -1;
|
||||
}
|
||||
```
|
||||
|
||||
=== "Zig"
|
||||
@ -1468,7 +1551,7 @@ $$
|
||||
|
||||
```csharp title="coin_change_ii.cs"
|
||||
/* 零钱兑换 II:动态规划 */
|
||||
int coinChangeIIDP(int[] coins, int amt) {
|
||||
int CoinChangeIIDP(int[] coins, int amt) {
|
||||
int n = coins.Length;
|
||||
// 初始化 dp 表
|
||||
int[,] dp = new int[n + 1, amt + 1];
|
||||
@ -1670,7 +1753,30 @@ $$
|
||||
=== "C"
|
||||
|
||||
```c title="coin_change_ii.c"
|
||||
[class]{}-[func]{coinChangeIIDP}
|
||||
/* 零钱兑换 II:动态规划 */
|
||||
int coinChangeIIDP(int coins[], int amt, int coinsSize) {
|
||||
int n = coinsSize;
|
||||
// 初始化 dp 表
|
||||
int dp[n + 1][amt + 1];
|
||||
memset(dp, 0, sizeof(dp));
|
||||
// 初始化首列
|
||||
for (int i = 0; i <= n; i++) {
|
||||
dp[i][0] = 1;
|
||||
}
|
||||
// 状态转移
|
||||
for (int i = 1; i <= n; i++) {
|
||||
for (int a = 1; a <= amt; a++) {
|
||||
if (coins[i - 1] > a) {
|
||||
// 若超过背包容量,则不选硬币 i
|
||||
dp[i][a] = dp[i - 1][a];
|
||||
} else {
|
||||
// 不选和选硬币 i 这两种方案之和
|
||||
dp[i][a] = dp[i - 1][a] + dp[i][a - coins[i - 1]];
|
||||
}
|
||||
}
|
||||
}
|
||||
return dp[n][amt];
|
||||
}
|
||||
```
|
||||
|
||||
=== "Zig"
|
||||
@ -1781,7 +1887,7 @@ $$
|
||||
|
||||
```csharp title="coin_change_ii.cs"
|
||||
/* 零钱兑换 II:空间优化后的动态规划 */
|
||||
int coinChangeIIDPComp(int[] coins, int amt) {
|
||||
int CoinChangeIIDPComp(int[] coins, int amt) {
|
||||
int n = coins.Length;
|
||||
// 初始化 dp 表
|
||||
int[] dp = new int[amt + 1];
|
||||
@ -1956,7 +2062,27 @@ $$
|
||||
=== "C"
|
||||
|
||||
```c title="coin_change_ii.c"
|
||||
[class]{}-[func]{coinChangeIIDPComp}
|
||||
/* 零钱兑换 II:空间优化后的动态规划 */
|
||||
int coinChangeIIDPComp(int coins[], int amt, int coinsSize) {
|
||||
int n = coinsSize;
|
||||
// 初始化 dp 表
|
||||
int dp[amt + 1];
|
||||
memset(dp, 0, sizeof(dp));
|
||||
dp[0] = 1;
|
||||
// 状态转移
|
||||
for (int i = 1; i <= n; i++) {
|
||||
for (int a = 1; a <= amt; a++) {
|
||||
if (coins[i - 1] > a) {
|
||||
// 若超过背包容量,则不选硬币 i
|
||||
dp[a] = dp[a];
|
||||
} else {
|
||||
// 不选和选硬币 i 这两种方案之和
|
||||
dp[a] = dp[a] + dp[a - coins[i - 1]];
|
||||
}
|
||||
}
|
||||
}
|
||||
return dp[amt];
|
||||
}
|
||||
```
|
||||
|
||||
=== "Zig"
|
||||
|
||||
@ -294,8 +294,8 @@ comments: true
|
||||
```csharp title="graph_adjacency_matrix.cs"
|
||||
/* 基于邻接矩阵实现的无向图类 */
|
||||
class GraphAdjMat {
|
||||
List<int> vertices; // 顶点列表,元素代表“顶点值”,索引代表“顶点索引”
|
||||
List<List<int>> adjMat; // 邻接矩阵,行列索引对应“顶点索引”
|
||||
readonly List<int> vertices; // 顶点列表,元素代表“顶点值”,索引代表“顶点索引”
|
||||
readonly List<List<int>> adjMat; // 邻接矩阵,行列索引对应“顶点索引”
|
||||
|
||||
/* 构造函数 */
|
||||
public GraphAdjMat(int[] vertices, int[][] edges) {
|
||||
@ -303,27 +303,27 @@ comments: true
|
||||
this.adjMat = new List<List<int>>();
|
||||
// 添加顶点
|
||||
foreach (int val in vertices) {
|
||||
addVertex(val);
|
||||
AddVertex(val);
|
||||
}
|
||||
// 添加边
|
||||
// 请注意,edges 元素代表顶点索引,即对应 vertices 元素索引
|
||||
foreach (int[] e in edges) {
|
||||
addEdge(e[0], e[1]);
|
||||
AddEdge(e[0], e[1]);
|
||||
}
|
||||
}
|
||||
|
||||
/* 获取顶点数量 */
|
||||
public int size() {
|
||||
public int Size() {
|
||||
return vertices.Count;
|
||||
}
|
||||
|
||||
/* 添加顶点 */
|
||||
public void addVertex(int val) {
|
||||
int n = size();
|
||||
public void AddVertex(int val) {
|
||||
int n = Size();
|
||||
// 向顶点列表中添加新顶点的值
|
||||
vertices.Add(val);
|
||||
// 在邻接矩阵中添加一行
|
||||
List<int> newRow = new List<int>(n);
|
||||
List<int> newRow = new(n);
|
||||
for (int j = 0; j < n; j++) {
|
||||
newRow.Add(0);
|
||||
}
|
||||
@ -335,8 +335,8 @@ comments: true
|
||||
}
|
||||
|
||||
/* 删除顶点 */
|
||||
public void removeVertex(int index) {
|
||||
if (index >= size())
|
||||
public void RemoveVertex(int index) {
|
||||
if (index >= Size())
|
||||
throw new IndexOutOfRangeException();
|
||||
// 在顶点列表中移除索引 index 的顶点
|
||||
vertices.RemoveAt(index);
|
||||
@ -350,9 +350,9 @@ comments: true
|
||||
|
||||
/* 添加边 */
|
||||
// 参数 i, j 对应 vertices 元素索引
|
||||
public void addEdge(int i, int j) {
|
||||
public void AddEdge(int i, int j) {
|
||||
// 索引越界与相等处理
|
||||
if (i < 0 || j < 0 || i >= size() || j >= size() || i == j)
|
||||
if (i < 0 || j < 0 || i >= Size() || j >= Size() || i == j)
|
||||
throw new IndexOutOfRangeException();
|
||||
// 在无向图中,邻接矩阵沿主对角线对称,即满足 (i, j) == (j, i)
|
||||
adjMat[i][j] = 1;
|
||||
@ -361,16 +361,16 @@ comments: true
|
||||
|
||||
/* 删除边 */
|
||||
// 参数 i, j 对应 vertices 元素索引
|
||||
public void removeEdge(int i, int j) {
|
||||
public void RemoveEdge(int i, int j) {
|
||||
// 索引越界与相等处理
|
||||
if (i < 0 || j < 0 || i >= size() || j >= size() || i == j)
|
||||
if (i < 0 || j < 0 || i >= Size() || j >= Size() || i == j)
|
||||
throw new IndexOutOfRangeException();
|
||||
adjMat[i][j] = 0;
|
||||
adjMat[j][i] = 0;
|
||||
}
|
||||
|
||||
/* 打印邻接矩阵 */
|
||||
public void print() {
|
||||
public void Print() {
|
||||
Console.Write("顶点列表 = ");
|
||||
PrintUtil.PrintList(vertices);
|
||||
Console.WriteLine("邻接矩阵 =");
|
||||
@ -1390,19 +1390,19 @@ comments: true
|
||||
this.adjList = new Dictionary<Vertex, List<Vertex>>();
|
||||
// 添加所有顶点和边
|
||||
foreach (Vertex[] edge in edges) {
|
||||
addVertex(edge[0]);
|
||||
addVertex(edge[1]);
|
||||
addEdge(edge[0], edge[1]);
|
||||
AddVertex(edge[0]);
|
||||
AddVertex(edge[1]);
|
||||
AddEdge(edge[0], edge[1]);
|
||||
}
|
||||
}
|
||||
|
||||
/* 获取顶点数量 */
|
||||
public int size() {
|
||||
public int Size() {
|
||||
return adjList.Count;
|
||||
}
|
||||
|
||||
/* 添加边 */
|
||||
public void addEdge(Vertex vet1, Vertex vet2) {
|
||||
public void AddEdge(Vertex vet1, Vertex vet2) {
|
||||
if (!adjList.ContainsKey(vet1) || !adjList.ContainsKey(vet2) || vet1 == vet2)
|
||||
throw new InvalidOperationException();
|
||||
// 添加边 vet1 - vet2
|
||||
@ -1411,7 +1411,7 @@ comments: true
|
||||
}
|
||||
|
||||
/* 删除边 */
|
||||
public void removeEdge(Vertex vet1, Vertex vet2) {
|
||||
public void RemoveEdge(Vertex vet1, Vertex vet2) {
|
||||
if (!adjList.ContainsKey(vet1) || !adjList.ContainsKey(vet2) || vet1 == vet2)
|
||||
throw new InvalidOperationException();
|
||||
// 删除边 vet1 - vet2
|
||||
@ -1420,7 +1420,7 @@ comments: true
|
||||
}
|
||||
|
||||
/* 添加顶点 */
|
||||
public void addVertex(Vertex vet) {
|
||||
public void AddVertex(Vertex vet) {
|
||||
if (adjList.ContainsKey(vet))
|
||||
return;
|
||||
// 在邻接表中添加一个新链表
|
||||
@ -1428,7 +1428,7 @@ comments: true
|
||||
}
|
||||
|
||||
/* 删除顶点 */
|
||||
public void removeVertex(Vertex vet) {
|
||||
public void RemoveVertex(Vertex vet) {
|
||||
if (!adjList.ContainsKey(vet))
|
||||
throw new InvalidOperationException();
|
||||
// 在邻接表中删除顶点 vet 对应的链表
|
||||
@ -1440,10 +1440,10 @@ comments: true
|
||||
}
|
||||
|
||||
/* 打印邻接表 */
|
||||
public void print() {
|
||||
public void Print() {
|
||||
Console.WriteLine("邻接表 =");
|
||||
foreach (KeyValuePair<Vertex, List<Vertex>> pair in adjList) {
|
||||
List<int> tmp = new List<int>();
|
||||
List<int> tmp = new();
|
||||
foreach (Vertex vertex in pair.Value)
|
||||
tmp.Add(vertex.val);
|
||||
Console.WriteLine(pair.Key.val + ": [" + string.Join(", ", tmp) + "],");
|
||||
|
||||
@ -119,13 +119,13 @@ BFS 通常借助队列来实现。队列具有“先入先出”的性质,这
|
||||
```csharp title="graph_bfs.cs"
|
||||
/* 广度优先遍历 BFS */
|
||||
// 使用邻接表来表示图,以便获取指定顶点的所有邻接顶点
|
||||
List<Vertex> graphBFS(GraphAdjList graph, Vertex startVet) {
|
||||
List<Vertex> GraphBFS(GraphAdjList graph, Vertex startVet) {
|
||||
// 顶点遍历序列
|
||||
List<Vertex> res = new List<Vertex>();
|
||||
List<Vertex> res = new();
|
||||
// 哈希表,用于记录已被访问过的顶点
|
||||
HashSet<Vertex> visited = new HashSet<Vertex>() { startVet };
|
||||
HashSet<Vertex> visited = new() { startVet };
|
||||
// 队列用于实现 BFS
|
||||
Queue<Vertex> que = new Queue<Vertex>();
|
||||
Queue<Vertex> que = new();
|
||||
que.Enqueue(startVet);
|
||||
// 以顶点 vet 为起点,循环直至访问完所有顶点
|
||||
while (que.Count > 0) {
|
||||
@ -532,7 +532,7 @@ BFS 通常借助队列来实现。队列具有“先入先出”的性质,这
|
||||
|
||||
```csharp title="graph_dfs.cs"
|
||||
/* 深度优先遍历 DFS 辅助函数 */
|
||||
void dfs(GraphAdjList graph, HashSet<Vertex> visited, List<Vertex> res, Vertex vet) {
|
||||
void Dfs(GraphAdjList graph, HashSet<Vertex> visited, List<Vertex> res, Vertex vet) {
|
||||
res.Add(vet); // 记录访问顶点
|
||||
visited.Add(vet); // 标记该顶点已被访问
|
||||
// 遍历该顶点的所有邻接顶点
|
||||
@ -541,18 +541,18 @@ BFS 通常借助队列来实现。队列具有“先入先出”的性质,这
|
||||
continue; // 跳过已被访问过的顶点
|
||||
}
|
||||
// 递归访问邻接顶点
|
||||
dfs(graph, visited, res, adjVet);
|
||||
Dfs(graph, visited, res, adjVet);
|
||||
}
|
||||
}
|
||||
|
||||
/* 深度优先遍历 DFS */
|
||||
// 使用邻接表来表示图,以便获取指定顶点的所有邻接顶点
|
||||
List<Vertex> graphDFS(GraphAdjList graph, Vertex startVet) {
|
||||
List<Vertex> GraphDFS(GraphAdjList graph, Vertex startVet) {
|
||||
// 顶点遍历序列
|
||||
List<Vertex> res = new List<Vertex>();
|
||||
List<Vertex> res = new();
|
||||
// 哈希表,用于记录已被访问过的顶点
|
||||
HashSet<Vertex> visited = new HashSet<Vertex>();
|
||||
dfs(graph, visited, res, startVet);
|
||||
HashSet<Vertex> visited = new();
|
||||
Dfs(graph, visited, res, startVet);
|
||||
return res;
|
||||
}
|
||||
```
|
||||
|
||||
@ -166,7 +166,7 @@ comments: true
|
||||
}
|
||||
|
||||
/* 分数背包:贪心 */
|
||||
double fractionalKnapsack(int[] wgt, int[] val, int cap) {
|
||||
double FractionalKnapsack(int[] wgt, int[] val, int cap) {
|
||||
// 创建物品列表,包含两个属性:重量、价值
|
||||
Item[] items = new Item[wgt.Length];
|
||||
for (int i = 0; i < wgt.Length; i++) {
|
||||
|
||||
@ -95,7 +95,7 @@ comments: true
|
||||
|
||||
```csharp title="coin_change_greedy.cs"
|
||||
/* 零钱兑换:贪心 */
|
||||
int coinChangeGreedy(int[] coins, int amt) {
|
||||
int CoinChangeGreedy(int[] coins, int amt) {
|
||||
// 假设 coins 列表有序
|
||||
int i = coins.Length - 1;
|
||||
int count = 0;
|
||||
|
||||
@ -168,7 +168,7 @@ $$
|
||||
|
||||
```csharp title="max_capacity.cs"
|
||||
/* 最大容量:贪心 */
|
||||
int maxCapacity(int[] ht) {
|
||||
int MaxCapacity(int[] ht) {
|
||||
// 初始化 i, j 分列数组两端
|
||||
int i = 0, j = ht.Length - 1;
|
||||
// 初始最大容量为 0
|
||||
|
||||
@ -147,7 +147,7 @@ $$
|
||||
|
||||
```csharp title="max_product_cutting.cs"
|
||||
/* 最大切分乘积:贪心 */
|
||||
int maxProductCutting(int n) {
|
||||
int MaxProductCutting(int n) {
|
||||
// 当 n <= 3 时,必须切分出一个 1
|
||||
if (n <= 3) {
|
||||
return 1 * (n - 1);
|
||||
|
||||
@ -180,7 +180,7 @@ index = hash(key) % capacity
|
||||
|
||||
```csharp title="simple_hash.cs"
|
||||
/* 加法哈希 */
|
||||
int addHash(string key) {
|
||||
int AddHash(string key) {
|
||||
long hash = 0;
|
||||
const int MODULUS = 1000000007;
|
||||
foreach (char c in key) {
|
||||
@ -190,7 +190,7 @@ index = hash(key) % capacity
|
||||
}
|
||||
|
||||
/* 乘法哈希 */
|
||||
int mulHash(string key) {
|
||||
int MulHash(string key) {
|
||||
long hash = 0;
|
||||
const int MODULUS = 1000000007;
|
||||
foreach (char c in key) {
|
||||
@ -200,7 +200,7 @@ index = hash(key) % capacity
|
||||
}
|
||||
|
||||
/* 异或哈希 */
|
||||
int xorHash(string key) {
|
||||
int XorHash(string key) {
|
||||
int hash = 0;
|
||||
const int MODULUS = 1000000007;
|
||||
foreach (char c in key) {
|
||||
@ -210,7 +210,7 @@ index = hash(key) % capacity
|
||||
}
|
||||
|
||||
/* 旋转哈希 */
|
||||
int rotHash(string key) {
|
||||
int RotHash(string key) {
|
||||
long hash = 0;
|
||||
const int MODULUS = 1000000007;
|
||||
foreach (char c in key) {
|
||||
@ -735,7 +735,7 @@ $$
|
||||
int hashTup = arr.GetHashCode();
|
||||
// 数组 [12836, 小哈] 的哈希值为 42931033;
|
||||
|
||||
ListNode obj = new ListNode(0);
|
||||
ListNode obj = new(0);
|
||||
int hashObj = obj.GetHashCode();
|
||||
// 节点对象 0 的哈希值为 39053774;
|
||||
```
|
||||
|
||||
@ -359,8 +359,8 @@ comments: true
|
||||
class HashMapChaining {
|
||||
int size; // 键值对数量
|
||||
int capacity; // 哈希表容量
|
||||
double loadThres; // 触发扩容的负载因子阈值
|
||||
int extendRatio; // 扩容倍数
|
||||
readonly double loadThres; // 触发扩容的负载因子阈值
|
||||
readonly int extendRatio; // 扩容倍数
|
||||
List<List<Pair>> buckets; // 桶数组
|
||||
|
||||
/* 构造方法 */
|
||||
@ -376,18 +376,18 @@ comments: true
|
||||
}
|
||||
|
||||
/* 哈希函数 */
|
||||
private int hashFunc(int key) {
|
||||
private int HashFunc(int key) {
|
||||
return key % capacity;
|
||||
}
|
||||
|
||||
/* 负载因子 */
|
||||
private double loadFactor() {
|
||||
private double LoadFactor() {
|
||||
return (double)size / capacity;
|
||||
}
|
||||
|
||||
/* 查询操作 */
|
||||
public string? get(int key) {
|
||||
int index = hashFunc(key);
|
||||
public string? Get(int key) {
|
||||
int index = HashFunc(key);
|
||||
// 遍历桶,若找到 key 则返回对应 val
|
||||
foreach (Pair pair in buckets[index]) {
|
||||
if (pair.key == key) {
|
||||
@ -399,12 +399,12 @@ comments: true
|
||||
}
|
||||
|
||||
/* 添加操作 */
|
||||
public void put(int key, string val) {
|
||||
public void Put(int key, string val) {
|
||||
// 当负载因子超过阈值时,执行扩容
|
||||
if (loadFactor() > loadThres) {
|
||||
extend();
|
||||
if (LoadFactor() > loadThres) {
|
||||
Extend();
|
||||
}
|
||||
int index = hashFunc(key);
|
||||
int index = HashFunc(key);
|
||||
// 遍历桶,若遇到指定 key ,则更新对应 val 并返回
|
||||
foreach (Pair pair in buckets[index]) {
|
||||
if (pair.key == key) {
|
||||
@ -418,8 +418,8 @@ comments: true
|
||||
}
|
||||
|
||||
/* 删除操作 */
|
||||
public void remove(int key) {
|
||||
int index = hashFunc(key);
|
||||
public void Remove(int key) {
|
||||
int index = HashFunc(key);
|
||||
// 遍历桶,从中删除键值对
|
||||
foreach (Pair pair in buckets[index].ToList()) {
|
||||
if (pair.key == key) {
|
||||
@ -431,7 +431,7 @@ comments: true
|
||||
}
|
||||
|
||||
/* 扩容哈希表 */
|
||||
private void extend() {
|
||||
private void Extend() {
|
||||
// 暂存原哈希表
|
||||
List<List<Pair>> bucketsTmp = buckets;
|
||||
// 初始化扩容后的新哈希表
|
||||
@ -444,15 +444,15 @@ comments: true
|
||||
// 将键值对从原哈希表搬运至新哈希表
|
||||
foreach (List<Pair> bucket in bucketsTmp) {
|
||||
foreach (Pair pair in bucket) {
|
||||
put(pair.key, pair.val);
|
||||
Put(pair.key, pair.val);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* 打印哈希表 */
|
||||
public void print() {
|
||||
public void Print() {
|
||||
foreach (List<Pair> bucket in buckets) {
|
||||
List<string> res = new List<string>();
|
||||
List<string> res = new();
|
||||
foreach (Pair pair in bucket) {
|
||||
res.Add(pair.key + " -> " + pair.val);
|
||||
}
|
||||
@ -1743,10 +1743,10 @@ comments: true
|
||||
class HashMapOpenAddressing {
|
||||
private int size; // 键值对数量
|
||||
private int capacity = 4; // 哈希表容量
|
||||
private double loadThres = 2.0 / 3.0; // 触发扩容的负载因子阈值
|
||||
private int extendRatio = 2; // 扩容倍数
|
||||
private readonly double loadThres = 2.0 / 3.0; // 触发扩容的负载因子阈值
|
||||
private readonly int extendRatio = 2; // 扩容倍数
|
||||
private Pair[] buckets; // 桶数组
|
||||
private Pair TOMBSTONE = new Pair(-1, "-1"); // 删除标记
|
||||
private readonly Pair TOMBSTONE = new(-1, "-1"); // 删除标记
|
||||
|
||||
/* 构造方法 */
|
||||
public HashMapOpenAddressing() {
|
||||
@ -1755,18 +1755,18 @@ comments: true
|
||||
}
|
||||
|
||||
/* 哈希函数 */
|
||||
private int hashFunc(int key) {
|
||||
private int HashFunc(int key) {
|
||||
return key % capacity;
|
||||
}
|
||||
|
||||
/* 负载因子 */
|
||||
private double loadFactor() {
|
||||
private double LoadFactor() {
|
||||
return (double)size / capacity;
|
||||
}
|
||||
|
||||
/* 搜索 key 对应的桶索引 */
|
||||
private int findBucket(int key) {
|
||||
int index = hashFunc(key);
|
||||
private int FindBucket(int key) {
|
||||
int index = HashFunc(key);
|
||||
int firstTombstone = -1;
|
||||
// 线性探测,当遇到空桶时跳出
|
||||
while (buckets[index] != null) {
|
||||
@ -1792,9 +1792,9 @@ comments: true
|
||||
}
|
||||
|
||||
/* 查询操作 */
|
||||
public string? get(int key) {
|
||||
public string? Get(int key) {
|
||||
// 搜索 key 对应的桶索引
|
||||
int index = findBucket(key);
|
||||
int index = FindBucket(key);
|
||||
// 若找到键值对,则返回对应 val
|
||||
if (buckets[index] != null && buckets[index] != TOMBSTONE) {
|
||||
return buckets[index].val;
|
||||
@ -1804,13 +1804,13 @@ comments: true
|
||||
}
|
||||
|
||||
/* 添加操作 */
|
||||
public void put(int key, string val) {
|
||||
public void Put(int key, string val) {
|
||||
// 当负载因子超过阈值时,执行扩容
|
||||
if (loadFactor() > loadThres) {
|
||||
extend();
|
||||
if (LoadFactor() > loadThres) {
|
||||
Extend();
|
||||
}
|
||||
// 搜索 key 对应的桶索引
|
||||
int index = findBucket(key);
|
||||
int index = FindBucket(key);
|
||||
// 若找到键值对,则覆盖 val 并返回
|
||||
if (buckets[index] != null && buckets[index] != TOMBSTONE) {
|
||||
buckets[index].val = val;
|
||||
@ -1822,9 +1822,9 @@ comments: true
|
||||
}
|
||||
|
||||
/* 删除操作 */
|
||||
public void remove(int key) {
|
||||
public void Remove(int key) {
|
||||
// 搜索 key 对应的桶索引
|
||||
int index = findBucket(key);
|
||||
int index = FindBucket(key);
|
||||
// 若找到键值对,则用删除标记覆盖它
|
||||
if (buckets[index] != null && buckets[index] != TOMBSTONE) {
|
||||
buckets[index] = TOMBSTONE;
|
||||
@ -1833,7 +1833,7 @@ comments: true
|
||||
}
|
||||
|
||||
/* 扩容哈希表 */
|
||||
private void extend() {
|
||||
private void Extend() {
|
||||
// 暂存原哈希表
|
||||
Pair[] bucketsTmp = buckets;
|
||||
// 初始化扩容后的新哈希表
|
||||
@ -1843,13 +1843,13 @@ comments: true
|
||||
// 将键值对从原哈希表搬运至新哈希表
|
||||
foreach (Pair pair in bucketsTmp) {
|
||||
if (pair != null && pair != TOMBSTONE) {
|
||||
put(pair.key, pair.val);
|
||||
Put(pair.key, pair.val);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* 打印哈希表 */
|
||||
public void print() {
|
||||
public void Print() {
|
||||
foreach (Pair pair in buckets) {
|
||||
if (pair == null) {
|
||||
Console.WriteLine("null");
|
||||
|
||||
@ -109,19 +109,19 @@ comments: true
|
||||
|
||||
```csharp title="hash_map.cs"
|
||||
/* 初始化哈希表 */
|
||||
Dictionary<int, String> map = new ();
|
||||
|
||||
/* 添加操作 */
|
||||
// 在哈希表中添加键值对 (key, value)
|
||||
map.Add(12836, "小哈");
|
||||
map.Add(15937, "小啰");
|
||||
map.Add(16750, "小算");
|
||||
map.Add(13276, "小法");
|
||||
map.Add(10583, "小鸭");
|
||||
Dictionary<int, string> map = new() {
|
||||
/* 添加操作 */
|
||||
// 在哈希表中添加键值对 (key, value)
|
||||
{ 12836, "小哈" },
|
||||
{ 15937, "小啰" },
|
||||
{ 16750, "小算" },
|
||||
{ 13276, "小法" },
|
||||
{ 10583, "小鸭" }
|
||||
};
|
||||
|
||||
/* 查询操作 */
|
||||
// 向哈希表输入键 key ,得到值 value
|
||||
String name = map[15937];
|
||||
string name = map[15937];
|
||||
|
||||
/* 删除操作 */
|
||||
// 在哈希表中删除键值对 (key, value)
|
||||
@ -791,7 +791,7 @@ index = hash(key) % capacity
|
||||
|
||||
/* 基于数组简易实现的哈希表 */
|
||||
class ArrayHashMap {
|
||||
private List<Pair?> buckets;
|
||||
private readonly List<Pair?> buckets;
|
||||
public ArrayHashMap() {
|
||||
// 初始化数组,包含 100 个桶
|
||||
buckets = new();
|
||||
@ -801,35 +801,35 @@ index = hash(key) % capacity
|
||||
}
|
||||
|
||||
/* 哈希函数 */
|
||||
private int hashFunc(int key) {
|
||||
private int HashFunc(int key) {
|
||||
int index = key % 100;
|
||||
return index;
|
||||
}
|
||||
|
||||
/* 查询操作 */
|
||||
public string? get(int key) {
|
||||
int index = hashFunc(key);
|
||||
public string? Get(int key) {
|
||||
int index = HashFunc(key);
|
||||
Pair? pair = buckets[index];
|
||||
if (pair == null) return null;
|
||||
return pair.val;
|
||||
}
|
||||
|
||||
/* 添加操作 */
|
||||
public void put(int key, string val) {
|
||||
Pair pair = new Pair(key, val);
|
||||
int index = hashFunc(key);
|
||||
public void Put(int key, string val) {
|
||||
Pair pair = new(key, val);
|
||||
int index = HashFunc(key);
|
||||
buckets[index] = pair;
|
||||
}
|
||||
|
||||
/* 删除操作 */
|
||||
public void remove(int key) {
|
||||
int index = hashFunc(key);
|
||||
public void Remove(int key) {
|
||||
int index = HashFunc(key);
|
||||
// 置为 null ,代表删除
|
||||
buckets[index] = null;
|
||||
}
|
||||
|
||||
/* 获取所有键值对 */
|
||||
public List<Pair> pairSet() {
|
||||
public List<Pair> PairSet() {
|
||||
List<Pair> pairSet = new();
|
||||
foreach (Pair? pair in buckets) {
|
||||
if (pair != null)
|
||||
@ -839,7 +839,7 @@ index = hash(key) % capacity
|
||||
}
|
||||
|
||||
/* 获取所有键 */
|
||||
public List<int> keySet() {
|
||||
public List<int> KeySet() {
|
||||
List<int> keySet = new();
|
||||
foreach (Pair? pair in buckets) {
|
||||
if (pair != null)
|
||||
@ -849,7 +849,7 @@ index = hash(key) % capacity
|
||||
}
|
||||
|
||||
/* 获取所有值 */
|
||||
public List<string> valueSet() {
|
||||
public List<string> ValueSet() {
|
||||
List<string> valueSet = new();
|
||||
foreach (Pair? pair in buckets) {
|
||||
if (pair != null)
|
||||
@ -859,8 +859,8 @@ index = hash(key) % capacity
|
||||
}
|
||||
|
||||
/* 打印哈希表 */
|
||||
public void print() {
|
||||
foreach (Pair kv in pairSet()) {
|
||||
public void Print() {
|
||||
foreach (Pair kv in PairSet()) {
|
||||
Console.WriteLine(kv.key + " -> " + kv.val);
|
||||
}
|
||||
}
|
||||
|
||||
@ -75,9 +75,9 @@ comments: true
|
||||
// 将列表元素原封不动添加进堆
|
||||
maxHeap = new List<int>(nums);
|
||||
// 堆化除叶节点以外的其他所有节点
|
||||
var size = parent(this.size() - 1);
|
||||
var size = Parent(this.Size() - 1);
|
||||
for (int i = size; i >= 0; i--) {
|
||||
siftDown(i);
|
||||
SiftDown(i);
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
@ -168,9 +168,9 @@ comments: true
|
||||
```csharp title="heap.cs"
|
||||
/* 初始化堆 */
|
||||
// 初始化小顶堆
|
||||
PriorityQueue<int, int> minHeap = new PriorityQueue<int, int>();
|
||||
PriorityQueue<int, int> minHeap = new();
|
||||
// 初始化大顶堆(使用 lambda 表达式修改 Comparator 即可)
|
||||
PriorityQueue<int, int> maxHeap = new PriorityQueue<int, int>(Comparer<int>.Create((x, y) => y - x));
|
||||
PriorityQueue<int, int> maxHeap = new(Comparer<int>.Create((x, y) => y - x));
|
||||
|
||||
/* 元素入堆 */
|
||||
maxHeap.Enqueue(1, 1);
|
||||
@ -431,17 +431,17 @@ comments: true
|
||||
|
||||
```csharp title="my_heap.cs"
|
||||
/* 获取左子节点索引 */
|
||||
int left(int i) {
|
||||
int Left(int i) {
|
||||
return 2 * i + 1;
|
||||
}
|
||||
|
||||
/* 获取右子节点索引 */
|
||||
int right(int i) {
|
||||
int Right(int i) {
|
||||
return 2 * i + 2;
|
||||
}
|
||||
|
||||
/* 获取父节点索引 */
|
||||
int parent(int i) {
|
||||
int Parent(int i) {
|
||||
return (i - 1) / 2; // 向下整除
|
||||
}
|
||||
```
|
||||
@ -634,7 +634,7 @@ comments: true
|
||||
|
||||
```csharp title="my_heap.cs"
|
||||
/* 访问堆顶元素 */
|
||||
int peek() {
|
||||
int Peek() {
|
||||
return maxHeap[0];
|
||||
}
|
||||
```
|
||||
@ -830,23 +830,23 @@ comments: true
|
||||
|
||||
```csharp title="my_heap.cs"
|
||||
/* 元素入堆 */
|
||||
void push(int val) {
|
||||
void Push(int val) {
|
||||
// 添加节点
|
||||
maxHeap.Add(val);
|
||||
// 从底至顶堆化
|
||||
siftUp(size() - 1);
|
||||
SiftUp(Size() - 1);
|
||||
}
|
||||
|
||||
/* 从节点 i 开始,从底至顶堆化 */
|
||||
void siftUp(int i) {
|
||||
void SiftUp(int i) {
|
||||
while (true) {
|
||||
// 获取节点 i 的父节点
|
||||
int p = parent(i);
|
||||
int p = Parent(i);
|
||||
// 若“越过根节点”或“节点无须修复”,则结束堆化
|
||||
if (p < 0 || maxHeap[i] <= maxHeap[p])
|
||||
break;
|
||||
// 交换两节点
|
||||
swap(i, p);
|
||||
Swap(i, p);
|
||||
// 循环向上堆化
|
||||
i = p;
|
||||
}
|
||||
@ -1241,34 +1241,34 @@ comments: true
|
||||
|
||||
```csharp title="my_heap.cs"
|
||||
/* 元素出堆 */
|
||||
int pop() {
|
||||
int Pop() {
|
||||
// 判空处理
|
||||
if (isEmpty())
|
||||
if (IsEmpty())
|
||||
throw new IndexOutOfRangeException();
|
||||
// 交换根节点与最右叶节点(即交换首元素与尾元素)
|
||||
swap(0, size() - 1);
|
||||
Swap(0, Size() - 1);
|
||||
// 删除节点
|
||||
int val = maxHeap.Last();
|
||||
maxHeap.RemoveAt(size() - 1);
|
||||
maxHeap.RemoveAt(Size() - 1);
|
||||
// 从顶至底堆化
|
||||
siftDown(0);
|
||||
SiftDown(0);
|
||||
// 返回堆顶元素
|
||||
return val;
|
||||
}
|
||||
|
||||
/* 从节点 i 开始,从顶至底堆化 */
|
||||
void siftDown(int i) {
|
||||
void SiftDown(int i) {
|
||||
while (true) {
|
||||
// 判断节点 i, l, r 中值最大的节点,记为 ma
|
||||
int l = left(i), r = right(i), ma = i;
|
||||
if (l < size() && maxHeap[l] > maxHeap[ma])
|
||||
int l = Left(i), r = Right(i), ma = i;
|
||||
if (l < Size() && maxHeap[l] > maxHeap[ma])
|
||||
ma = l;
|
||||
if (r < size() && maxHeap[r] > maxHeap[ma])
|
||||
if (r < Size() && maxHeap[r] > maxHeap[ma])
|
||||
ma = r;
|
||||
// 若“节点 i 最大”或“越过叶节点”,则结束堆化
|
||||
if (ma == i) break;
|
||||
// 交换两节点
|
||||
swap(i, ma);
|
||||
Swap(i, ma);
|
||||
// 循环向下堆化
|
||||
i = ma;
|
||||
}
|
||||
|
||||
@ -142,8 +142,8 @@ comments: true
|
||||
|
||||
```csharp title="top_k.cs"
|
||||
/* 基于堆查找数组中最大的 k 个元素 */
|
||||
PriorityQueue<int, int> topKHeap(int[] nums, int k) {
|
||||
PriorityQueue<int, int> heap = new PriorityQueue<int, int>();
|
||||
PriorityQueue<int, int> TopKHeap(int[] nums, int k) {
|
||||
PriorityQueue<int, int> heap = new();
|
||||
// 将数组的前 k 个元素入堆
|
||||
for (int i = 0; i < k; i++) {
|
||||
heap.Enqueue(nums[i], nums[i]);
|
||||
|
||||
@ -119,7 +119,7 @@ comments: true
|
||||
|
||||
```csharp title="binary_search.cs"
|
||||
/* 二分查找(双闭区间) */
|
||||
int binarySearch(int[] nums, int target) {
|
||||
int BinarySearch(int[] nums, int target) {
|
||||
// 初始化双闭区间 [0, n-1] ,即 i, j 分别指向数组首元素、尾元素
|
||||
int i = 0, j = nums.Length - 1;
|
||||
// 循环,当搜索区间为空时跳出(当 i > j 时为空)
|
||||
@ -409,7 +409,7 @@ comments: true
|
||||
|
||||
```csharp title="binary_search.cs"
|
||||
/* 二分查找(左闭右开) */
|
||||
int binarySearchLCRO(int[] nums, int target) {
|
||||
int BinarySearchLCRO(int[] nums, int target) {
|
||||
// 初始化左闭右开 [0, n) ,即 i, j 分别指向数组首元素、尾元素+1
|
||||
int i = 0, j = nums.Length;
|
||||
// 循环,当搜索区间为空时跳出(当 i = j 时为空)
|
||||
|
||||
@ -69,9 +69,9 @@ comments: true
|
||||
|
||||
```csharp title="binary_search_edge.cs"
|
||||
/* 二分查找最左一个 target */
|
||||
int binarySearchLeftEdge(int[] nums, int target) {
|
||||
int BinarySearchLeftEdge(int[] nums, int target) {
|
||||
// 等价于查找 target 的插入点
|
||||
int i = binary_search_insertion.binarySearchInsertion(nums, target);
|
||||
int i = binary_search_insertion.BinarySearchInsertion(nums, target);
|
||||
// 未找到 target ,返回 -1
|
||||
if (i == nums.Length || nums[i] != target) {
|
||||
return -1;
|
||||
@ -273,9 +273,9 @@ comments: true
|
||||
|
||||
```csharp title="binary_search_edge.cs"
|
||||
/* 二分查找最右一个 target */
|
||||
int binarySearchRightEdge(int[] nums, int target) {
|
||||
int BinarySearchRightEdge(int[] nums, int target) {
|
||||
// 转化为查找最左一个 target + 1
|
||||
int i = binary_search_insertion.binarySearchInsertion(nums, target + 1);
|
||||
int i = binary_search_insertion.BinarySearchInsertion(nums, target + 1);
|
||||
// j 指向最右一个 target ,i 指向首个大于 target 的元素
|
||||
int j = i - 1;
|
||||
// 未找到 target ,返回 -1
|
||||
|
||||
@ -92,7 +92,7 @@ comments: true
|
||||
|
||||
```csharp title="binary_search_insertion.cs"
|
||||
/* 二分查找插入点(无重复元素) */
|
||||
int binarySearchInsertionSimple(int[] nums, int target) {
|
||||
int BinarySearchInsertionSimple(int[] nums, int target) {
|
||||
int i = 0, j = nums.Length - 1; // 初始化双闭区间 [0, n-1]
|
||||
while (i <= j) {
|
||||
int m = i + (j - i) / 2; // 计算中点索引 m
|
||||
@ -392,7 +392,7 @@ comments: true
|
||||
|
||||
```csharp title="binary_search_insertion.cs"
|
||||
/* 二分查找插入点(存在重复元素) */
|
||||
int binarySearchInsertion(int[] nums, int target) {
|
||||
int BinarySearchInsertion(int[] nums, int target) {
|
||||
int i = 0, j = nums.Length - 1; // 初始化双闭区间 [0, n-1]
|
||||
while (i <= j) {
|
||||
int m = i + (j - i) / 2; // 计算中点索引 m
|
||||
|
||||
@ -69,7 +69,7 @@ comments: true
|
||||
|
||||
```csharp title="two_sum.cs"
|
||||
/* 方法一:暴力枚举 */
|
||||
int[] twoSumBruteForce(int[] nums, int target) {
|
||||
int[] TwoSumBruteForce(int[] nums, int target) {
|
||||
int size = nums.Length;
|
||||
// 两层循环,时间复杂度 O(n^2)
|
||||
for (int i = 0; i < size - 1; i++) {
|
||||
@ -306,7 +306,7 @@ comments: true
|
||||
|
||||
```csharp title="two_sum.cs"
|
||||
/* 方法二:辅助哈希表 */
|
||||
int[] twoSumHashTable(int[] nums, int target) {
|
||||
int[] TwoSumHashTable(int[] nums, int target) {
|
||||
int size = nums.Length;
|
||||
// 辅助哈希表,空间复杂度 O(n)
|
||||
Dictionary<int, int> dic = new();
|
||||
|
||||
@ -102,16 +102,14 @@ comments: true
|
||||
|
||||
```csharp title="bubble_sort.cs"
|
||||
/* 冒泡排序 */
|
||||
void bubbleSort(int[] nums) {
|
||||
void BubbleSort(int[] nums) {
|
||||
// 外循环:未排序区间为 [0, i]
|
||||
for (int i = nums.Length - 1; i > 0; i--) {
|
||||
// 内循环:将未排序区间 [0, i] 中的最大元素交换至该区间的最右端
|
||||
for (int j = 0; j < i; j++) {
|
||||
if (nums[j] > nums[j + 1]) {
|
||||
// 交换 nums[j] 与 nums[j + 1]
|
||||
int tmp = nums[j];
|
||||
nums[j] = nums[j + 1];
|
||||
nums[j + 1] = tmp;
|
||||
(nums[j + 1], nums[j]) = (nums[j], nums[j + 1]);
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -353,7 +351,7 @@ comments: true
|
||||
|
||||
```csharp title="bubble_sort.cs"
|
||||
/* 冒泡排序(标志优化)*/
|
||||
void bubbleSortWithFlag(int[] nums) {
|
||||
void BubbleSortWithFlag(int[] nums) {
|
||||
// 外循环:未排序区间为 [0, i]
|
||||
for (int i = nums.Length - 1; i > 0; i--) {
|
||||
bool flag = false; // 初始化标志位
|
||||
@ -361,9 +359,7 @@ comments: true
|
||||
for (int j = 0; j < i; j++) {
|
||||
if (nums[j] > nums[j + 1]) {
|
||||
// 交换 nums[j] 与 nums[j + 1]
|
||||
int tmp = nums[j];
|
||||
nums[j] = nums[j + 1];
|
||||
nums[j + 1] = tmp;
|
||||
(nums[j + 1], nums[j]) = (nums[j], nums[j + 1]);
|
||||
flag = true; // 记录交换元素
|
||||
}
|
||||
}
|
||||
|
||||
@ -113,10 +113,10 @@ comments: true
|
||||
|
||||
```csharp title="bucket_sort.cs"
|
||||
/* 桶排序 */
|
||||
void bucketSort(float[] nums) {
|
||||
void BucketSort(float[] nums) {
|
||||
// 初始化 k = n/2 个桶,预期向每个桶分配 2 个元素
|
||||
int k = nums.Length / 2;
|
||||
List<List<float>> buckets = new List<List<float>>();
|
||||
List<List<float>> buckets = new();
|
||||
for (int i = 0; i < k; i++) {
|
||||
buckets.Add(new List<float>());
|
||||
}
|
||||
|
||||
@ -100,7 +100,7 @@ comments: true
|
||||
```csharp title="counting_sort.cs"
|
||||
/* 计数排序 */
|
||||
// 简单实现,无法用于排序对象
|
||||
void countingSortNaive(int[] nums) {
|
||||
void CountingSortNaive(int[] nums) {
|
||||
// 1. 统计数组最大元素 m
|
||||
int m = 0;
|
||||
foreach (int num in nums) {
|
||||
@ -475,7 +475,7 @@ $$
|
||||
```csharp title="counting_sort.cs"
|
||||
/* 计数排序 */
|
||||
// 完整实现,可排序对象,并且是稳定排序
|
||||
void countingSort(int[] nums) {
|
||||
void CountingSort(int[] nums) {
|
||||
// 1. 统计数组最大元素 m
|
||||
int m = 0;
|
||||
foreach (int num in nums) {
|
||||
|
||||
@ -192,7 +192,7 @@ comments: true
|
||||
|
||||
```csharp title="heap_sort.cs"
|
||||
/* 堆的长度为 n ,从节点 i 开始,从顶至底堆化 */
|
||||
void siftDown(int[] nums, int n, int i) {
|
||||
void SiftDown(int[] nums, int n, int i) {
|
||||
while (true) {
|
||||
// 判断节点 i, l, r 中值最大的节点,记为 ma
|
||||
int l = 2 * i + 1;
|
||||
@ -213,17 +213,17 @@ comments: true
|
||||
}
|
||||
|
||||
/* 堆排序 */
|
||||
void heapSort(int[] nums) {
|
||||
void HeapSort(int[] nums) {
|
||||
// 建堆操作:堆化除叶节点以外的其他所有节点
|
||||
for (int i = nums.Length / 2 - 1; i >= 0; i--) {
|
||||
siftDown(nums, nums.Length, i);
|
||||
SiftDown(nums, nums.Length, i);
|
||||
}
|
||||
// 从堆中提取最大元素,循环 n-1 轮
|
||||
for (int i = nums.Length - 1; i > 0; i--) {
|
||||
// 交换根节点与最右叶节点(即交换首元素与尾元素)
|
||||
(nums[i], nums[0]) = (nums[0], nums[i]);
|
||||
// 以根节点为起点,从顶至底进行堆化
|
||||
siftDown(nums, i, 0);
|
||||
SiftDown(nums, i, 0);
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
@ -83,7 +83,7 @@ comments: true
|
||||
|
||||
```csharp title="insertion_sort.cs"
|
||||
/* 插入排序 */
|
||||
void insertionSort(int[] nums) {
|
||||
void InsertionSort(int[] nums) {
|
||||
// 外循环:已排序元素数量为 1, 2, ..., n
|
||||
for (int i = 1; i < nums.Length; i++) {
|
||||
int bas = nums[i], j = i - 1;
|
||||
|
||||
@ -197,7 +197,7 @@ comments: true
|
||||
/* 合并左子数组和右子数组 */
|
||||
// 左子数组区间 [left, mid]
|
||||
// 右子数组区间 [mid + 1, right]
|
||||
void merge(int[] nums, int left, int mid, int right) {
|
||||
void Merge(int[] nums, int left, int mid, int right) {
|
||||
// 初始化辅助数组
|
||||
int[] tmp = nums[left..(right + 1)];
|
||||
// 左子数组的起始索引和结束索引
|
||||
@ -221,15 +221,15 @@ comments: true
|
||||
}
|
||||
|
||||
/* 归并排序 */
|
||||
void mergeSort(int[] nums, int left, int right) {
|
||||
void MergeSort(int[] nums, int left, int right) {
|
||||
// 终止条件
|
||||
if (left >= right) return; // 当子数组长度为 1 时终止递归
|
||||
// 划分阶段
|
||||
int mid = (left + right) / 2; // 计算中点
|
||||
mergeSort(nums, left, mid); // 递归左子数组
|
||||
mergeSort(nums, mid + 1, right); // 递归右子数组
|
||||
MergeSort(nums, left, mid); // 递归左子数组
|
||||
MergeSort(nums, mid + 1, right); // 递归右子数组
|
||||
// 合并阶段
|
||||
merge(nums, left, mid, right);
|
||||
Merge(nums, left, mid, right);
|
||||
}
|
||||
```
|
||||
|
||||
|
||||
@ -122,14 +122,12 @@ comments: true
|
||||
|
||||
```csharp title="quick_sort.cs"
|
||||
/* 元素交换 */
|
||||
void swap(int[] nums, int i, int j) {
|
||||
int tmp = nums[i];
|
||||
nums[i] = nums[j];
|
||||
nums[j] = tmp;
|
||||
void Swap(int[] nums, int i, int j) {
|
||||
(nums[j], nums[i]) = (nums[i], nums[j]);
|
||||
}
|
||||
|
||||
/* 哨兵划分 */
|
||||
int partition(int[] nums, int left, int right) {
|
||||
int Partition(int[] nums, int left, int right) {
|
||||
// 以 nums[left] 作为基准数
|
||||
int i = left, j = right;
|
||||
while (i < j) {
|
||||
@ -137,9 +135,9 @@ comments: true
|
||||
j--; // 从右向左找首个小于基准数的元素
|
||||
while (i < j && nums[i] <= nums[left])
|
||||
i++; // 从左向右找首个大于基准数的元素
|
||||
swap(nums, i, j); // 交换这两个元素
|
||||
Swap(nums, i, j); // 交换这两个元素
|
||||
}
|
||||
swap(nums, i, left); // 将基准数交换至两子数组的分界线
|
||||
Swap(nums, i, left); // 将基准数交换至两子数组的分界线
|
||||
return i; // 返回基准数的索引
|
||||
}
|
||||
```
|
||||
@ -423,15 +421,15 @@ comments: true
|
||||
|
||||
```csharp title="quick_sort.cs"
|
||||
/* 快速排序 */
|
||||
void quickSort(int[] nums, int left, int right) {
|
||||
void QuickSort(int[] nums, int left, int right) {
|
||||
// 子数组长度为 1 时终止递归
|
||||
if (left >= right)
|
||||
return;
|
||||
// 哨兵划分
|
||||
int pivot = partition(nums, left, right);
|
||||
int pivot = Partition(nums, left, right);
|
||||
// 递归左子数组、右子数组
|
||||
quickSort(nums, left, pivot - 1);
|
||||
quickSort(nums, pivot + 1, right);
|
||||
QuickSort(nums, left, pivot - 1);
|
||||
QuickSort(nums, pivot + 1, right);
|
||||
}
|
||||
```
|
||||
|
||||
@ -719,7 +717,7 @@ comments: true
|
||||
|
||||
```csharp title="quick_sort.cs"
|
||||
/* 选取三个元素的中位数 */
|
||||
int medianThree(int[] nums, int left, int mid, int right) {
|
||||
int MedianThree(int[] nums, int left, int mid, int right) {
|
||||
// 此处使用异或运算来简化代码
|
||||
// 异或规则为 0 ^ 0 = 1 ^ 1 = 0, 0 ^ 1 = 1 ^ 0 = 1
|
||||
if ((nums[left] < nums[mid]) ^ (nums[left] < nums[right]))
|
||||
@ -731,11 +729,11 @@ comments: true
|
||||
}
|
||||
|
||||
/* 哨兵划分(三数取中值) */
|
||||
int partition(int[] nums, int left, int right) {
|
||||
int Partition(int[] nums, int left, int right) {
|
||||
// 选取三个候选元素的中位数
|
||||
int med = medianThree(nums, left, (left + right) / 2, right);
|
||||
int med = MedianThree(nums, left, (left + right) / 2, right);
|
||||
// 将中位数交换至数组最左端
|
||||
swap(nums, left, med);
|
||||
Swap(nums, left, med);
|
||||
// 以 nums[left] 作为基准数
|
||||
int i = left, j = right;
|
||||
while (i < j) {
|
||||
@ -743,9 +741,9 @@ comments: true
|
||||
j--; // 从右向左找首个小于基准数的元素
|
||||
while (i < j && nums[i] <= nums[left])
|
||||
i++; // 从左向右找首个大于基准数的元素
|
||||
swap(nums, i, j); // 交换这两个元素
|
||||
Swap(nums, i, j); // 交换这两个元素
|
||||
}
|
||||
swap(nums, i, left); // 将基准数交换至两子数组的分界线
|
||||
Swap(nums, i, left); // 将基准数交换至两子数组的分界线
|
||||
return i; // 返回基准数的索引
|
||||
}
|
||||
```
|
||||
@ -1125,17 +1123,17 @@ comments: true
|
||||
|
||||
```csharp title="quick_sort.cs"
|
||||
/* 快速排序(尾递归优化) */
|
||||
void quickSort(int[] nums, int left, int right) {
|
||||
void QuickSort(int[] nums, int left, int right) {
|
||||
// 子数组长度为 1 时终止
|
||||
while (left < right) {
|
||||
// 哨兵划分操作
|
||||
int pivot = partition(nums, left, right);
|
||||
int pivot = Partition(nums, left, right);
|
||||
// 对两个子数组中较短的那个执行快排
|
||||
if (pivot - left < right - pivot) {
|
||||
quickSort(nums, left, pivot - 1); // 递归排序左子数组
|
||||
QuickSort(nums, left, pivot - 1); // 递归排序左子数组
|
||||
left = pivot + 1; // 剩余未排序区间为 [pivot + 1, right]
|
||||
} else {
|
||||
quickSort(nums, pivot + 1, right); // 递归排序右子数组
|
||||
QuickSort(nums, pivot + 1, right); // 递归排序右子数组
|
||||
right = pivot - 1; // 剩余未排序区间为 [left, pivot - 1]
|
||||
}
|
||||
}
|
||||
|
||||
@ -183,19 +183,19 @@ $$
|
||||
|
||||
```csharp title="radix_sort.cs"
|
||||
/* 获取元素 num 的第 k 位,其中 exp = 10^(k-1) */
|
||||
int digit(int num, int exp) {
|
||||
int Digit(int num, int exp) {
|
||||
// 传入 exp 而非 k 可以避免在此重复执行昂贵的次方计算
|
||||
return (num / exp) % 10;
|
||||
}
|
||||
|
||||
/* 计数排序(根据 nums 第 k 位排序) */
|
||||
void countingSortDigit(int[] nums, int exp) {
|
||||
void CountingSortDigit(int[] nums, int exp) {
|
||||
// 十进制的位范围为 0~9 ,因此需要长度为 10 的桶
|
||||
int[] counter = new int[10];
|
||||
int n = nums.Length;
|
||||
// 统计 0~9 各数字的出现次数
|
||||
for (int i = 0; i < n; i++) {
|
||||
int d = digit(nums[i], exp); // 获取 nums[i] 第 k 位,记为 d
|
||||
int d = Digit(nums[i], exp); // 获取 nums[i] 第 k 位,记为 d
|
||||
counter[d]++; // 统计数字 d 的出现次数
|
||||
}
|
||||
// 求前缀和,将“出现个数”转换为“数组索引”
|
||||
@ -205,7 +205,7 @@ $$
|
||||
// 倒序遍历,根据桶内统计结果,将各元素填入 res
|
||||
int[] res = new int[n];
|
||||
for (int i = n - 1; i >= 0; i--) {
|
||||
int d = digit(nums[i], exp);
|
||||
int d = Digit(nums[i], exp);
|
||||
int j = counter[d] - 1; // 获取 d 在数组中的索引 j
|
||||
res[j] = nums[i]; // 将当前元素填入索引 j
|
||||
counter[d]--; // 将 d 的数量减 1
|
||||
@ -217,7 +217,7 @@ $$
|
||||
}
|
||||
|
||||
/* 基数排序 */
|
||||
void radixSort(int[] nums) {
|
||||
void RadixSort(int[] nums) {
|
||||
// 获取数组的最大元素,用于判断最大位数
|
||||
int m = int.MinValue;
|
||||
foreach (int num in nums) {
|
||||
@ -229,7 +229,7 @@ $$
|
||||
// k = 1 -> exp = 1
|
||||
// k = 2 -> exp = 10
|
||||
// 即 exp = 10^(k-1)
|
||||
countingSortDigit(nums, exp);
|
||||
CountingSortDigit(nums, exp);
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
@ -114,7 +114,7 @@ comments: true
|
||||
|
||||
```csharp title="selection_sort.cs"
|
||||
/* 选择排序 */
|
||||
void selectionSort(int[] nums) {
|
||||
void SelectionSort(int[] nums) {
|
||||
int n = nums.Length;
|
||||
// 外循环:未排序区间为 [i, n-1]
|
||||
for (int i = 0; i < n - 1; i++) {
|
||||
|
||||
@ -120,7 +120,7 @@ comments: true
|
||||
```csharp title="deque.cs"
|
||||
/* 初始化双向队列 */
|
||||
// 在 C# 中,将链表 LinkedList 看作双向队列来使用
|
||||
LinkedList<int> deque = new LinkedList<int>();
|
||||
LinkedList<int> deque = new();
|
||||
|
||||
/* 元素入队 */
|
||||
deque.AddLast(2); // 添加至队尾
|
||||
@ -800,20 +800,20 @@ comments: true
|
||||
}
|
||||
|
||||
/* 获取双向队列的长度 */
|
||||
public int size() {
|
||||
public int Size() {
|
||||
return queSize;
|
||||
}
|
||||
|
||||
/* 判断双向队列是否为空 */
|
||||
public bool isEmpty() {
|
||||
return size() == 0;
|
||||
public bool IsEmpty() {
|
||||
return Size() == 0;
|
||||
}
|
||||
|
||||
/* 入队操作 */
|
||||
private void push(int num, bool isFront) {
|
||||
ListNode node = new ListNode(num);
|
||||
private void Push(int num, bool isFront) {
|
||||
ListNode node = new(num);
|
||||
// 若链表为空,则令 front, rear 都指向 node
|
||||
if (isEmpty()) {
|
||||
if (IsEmpty()) {
|
||||
front = node;
|
||||
rear = node;
|
||||
}
|
||||
@ -836,25 +836,25 @@ comments: true
|
||||
}
|
||||
|
||||
/* 队首入队 */
|
||||
public void pushFirst(int num) {
|
||||
push(num, true);
|
||||
public void PushFirst(int num) {
|
||||
Push(num, true);
|
||||
}
|
||||
|
||||
/* 队尾入队 */
|
||||
public void pushLast(int num) {
|
||||
push(num, false);
|
||||
public void PushLast(int num) {
|
||||
Push(num, false);
|
||||
}
|
||||
|
||||
/* 出队操作 */
|
||||
private int? pop(bool isFront) {
|
||||
if (isEmpty())
|
||||
private int? Pop(bool isFront) {
|
||||
if (IsEmpty())
|
||||
throw new Exception();
|
||||
int val;
|
||||
int? val;
|
||||
// 队首出队操作
|
||||
if (isFront) {
|
||||
val = front.val; // 暂存头节点值
|
||||
val = front?.val; // 暂存头节点值
|
||||
// 删除头节点
|
||||
ListNode fNext = front.next;
|
||||
ListNode? fNext = front?.next;
|
||||
if (fNext != null) {
|
||||
fNext.prev = null;
|
||||
front.next = null;
|
||||
@ -863,9 +863,9 @@ comments: true
|
||||
}
|
||||
// 队尾出队操作
|
||||
else {
|
||||
val = rear.val; // 暂存尾节点值
|
||||
val = rear?.val; // 暂存尾节点值
|
||||
// 删除尾节点
|
||||
ListNode rPrev = rear.prev;
|
||||
ListNode? rPrev = rear?.prev;
|
||||
if (rPrev != null) {
|
||||
rPrev.next = null;
|
||||
rear.prev = null;
|
||||
@ -878,36 +878,36 @@ comments: true
|
||||
}
|
||||
|
||||
/* 队首出队 */
|
||||
public int? popFirst() {
|
||||
return pop(true);
|
||||
public int? PopFirst() {
|
||||
return Pop(true);
|
||||
}
|
||||
|
||||
/* 队尾出队 */
|
||||
public int? popLast() {
|
||||
return pop(false);
|
||||
public int? PopLast() {
|
||||
return Pop(false);
|
||||
}
|
||||
|
||||
/* 访问队首元素 */
|
||||
public int? peekFirst() {
|
||||
if (isEmpty())
|
||||
public int? PeekFirst() {
|
||||
if (IsEmpty())
|
||||
throw new Exception();
|
||||
return front.val;
|
||||
return front?.val;
|
||||
}
|
||||
|
||||
/* 访问队尾元素 */
|
||||
public int? peekLast() {
|
||||
if (isEmpty())
|
||||
public int? PeekLast() {
|
||||
if (IsEmpty())
|
||||
throw new Exception();
|
||||
return rear.val;
|
||||
return rear?.val;
|
||||
}
|
||||
|
||||
/* 返回数组用于打印 */
|
||||
public int[] toArray() {
|
||||
ListNode node = front;
|
||||
int[] res = new int[size()];
|
||||
public int?[] ToArray() {
|
||||
ListNode? node = front;
|
||||
int?[] res = new int?[Size()];
|
||||
for (int i = 0; i < res.Length; i++) {
|
||||
res[i] = node.val;
|
||||
node = node.next;
|
||||
res[i] = node?.val;
|
||||
node = node?.next;
|
||||
}
|
||||
|
||||
return res;
|
||||
@ -2357,95 +2357,95 @@ comments: true
|
||||
}
|
||||
|
||||
/* 获取双向队列的容量 */
|
||||
public int capacity() {
|
||||
public int Capacity() {
|
||||
return nums.Length;
|
||||
}
|
||||
|
||||
/* 获取双向队列的长度 */
|
||||
public int size() {
|
||||
public int Size() {
|
||||
return queSize;
|
||||
}
|
||||
|
||||
/* 判断双向队列是否为空 */
|
||||
public bool isEmpty() {
|
||||
public bool IsEmpty() {
|
||||
return queSize == 0;
|
||||
}
|
||||
|
||||
/* 计算环形数组索引 */
|
||||
private int index(int i) {
|
||||
private int Index(int i) {
|
||||
// 通过取余操作实现数组首尾相连
|
||||
// 当 i 越过数组尾部后,回到头部
|
||||
// 当 i 越过数组头部后,回到尾部
|
||||
return (i + capacity()) % capacity();
|
||||
return (i + Capacity()) % Capacity();
|
||||
}
|
||||
|
||||
/* 队首入队 */
|
||||
public void pushFirst(int num) {
|
||||
if (queSize == capacity()) {
|
||||
public void PushFirst(int num) {
|
||||
if (queSize == Capacity()) {
|
||||
Console.WriteLine("双向队列已满");
|
||||
return;
|
||||
}
|
||||
// 队首指针向左移动一位
|
||||
// 通过取余操作,实现 front 越过数组头部后回到尾部
|
||||
front = index(front - 1);
|
||||
front = Index(front - 1);
|
||||
// 将 num 添加至队首
|
||||
nums[front] = num;
|
||||
queSize++;
|
||||
}
|
||||
|
||||
/* 队尾入队 */
|
||||
public void pushLast(int num) {
|
||||
if (queSize == capacity()) {
|
||||
public void PushLast(int num) {
|
||||
if (queSize == Capacity()) {
|
||||
Console.WriteLine("双向队列已满");
|
||||
return;
|
||||
}
|
||||
// 计算尾指针,指向队尾索引 + 1
|
||||
int rear = index(front + queSize);
|
||||
int rear = Index(front + queSize);
|
||||
// 将 num 添加至队尾
|
||||
nums[rear] = num;
|
||||
queSize++;
|
||||
}
|
||||
|
||||
/* 队首出队 */
|
||||
public int popFirst() {
|
||||
int num = peekFirst();
|
||||
public int PopFirst() {
|
||||
int num = PeekFirst();
|
||||
// 队首指针向后移动一位
|
||||
front = index(front + 1);
|
||||
front = Index(front + 1);
|
||||
queSize--;
|
||||
return num;
|
||||
}
|
||||
|
||||
/* 队尾出队 */
|
||||
public int popLast() {
|
||||
int num = peekLast();
|
||||
public int PopLast() {
|
||||
int num = PeekLast();
|
||||
queSize--;
|
||||
return num;
|
||||
}
|
||||
|
||||
/* 访问队首元素 */
|
||||
public int peekFirst() {
|
||||
if (isEmpty()) {
|
||||
public int PeekFirst() {
|
||||
if (IsEmpty()) {
|
||||
throw new InvalidOperationException();
|
||||
}
|
||||
return nums[front];
|
||||
}
|
||||
|
||||
/* 访问队尾元素 */
|
||||
public int peekLast() {
|
||||
if (isEmpty()) {
|
||||
public int PeekLast() {
|
||||
if (IsEmpty()) {
|
||||
throw new InvalidOperationException();
|
||||
}
|
||||
// 计算尾元素索引
|
||||
int last = index(front + queSize - 1);
|
||||
int last = Index(front + queSize - 1);
|
||||
return nums[last];
|
||||
}
|
||||
|
||||
/* 返回数组用于打印 */
|
||||
public int[] toArray() {
|
||||
public int[] ToArray() {
|
||||
// 仅转换有效长度范围内的列表元素
|
||||
int[] res = new int[queSize];
|
||||
for (int i = 0, j = front; i < queSize; i++, j++) {
|
||||
res[i] = nums[index(j)];
|
||||
res[i] = nums[Index(j)];
|
||||
}
|
||||
return res;
|
||||
}
|
||||
|
||||
@ -556,19 +556,19 @@ comments: true
|
||||
}
|
||||
|
||||
/* 获取队列的长度 */
|
||||
public int size() {
|
||||
public int Size() {
|
||||
return queSize;
|
||||
}
|
||||
|
||||
/* 判断队列是否为空 */
|
||||
public bool isEmpty() {
|
||||
return size() == 0;
|
||||
public bool IsEmpty() {
|
||||
return Size() == 0;
|
||||
}
|
||||
|
||||
/* 入队 */
|
||||
public void push(int num) {
|
||||
public void Push(int num) {
|
||||
// 尾节点后添加 num
|
||||
ListNode node = new ListNode(num);
|
||||
ListNode node = new(num);
|
||||
// 如果队列为空,则令头、尾节点都指向该节点
|
||||
if (front == null) {
|
||||
front = node;
|
||||
@ -582,8 +582,8 @@ comments: true
|
||||
}
|
||||
|
||||
/* 出队 */
|
||||
public int pop() {
|
||||
int num = peek();
|
||||
public int Pop() {
|
||||
int num = Peek();
|
||||
// 删除头节点
|
||||
front = front?.next;
|
||||
queSize--;
|
||||
@ -591,19 +591,19 @@ comments: true
|
||||
}
|
||||
|
||||
/* 访问队首元素 */
|
||||
public int peek() {
|
||||
if (isEmpty())
|
||||
public int Peek() {
|
||||
if (IsEmpty())
|
||||
throw new Exception();
|
||||
return front.val;
|
||||
}
|
||||
|
||||
/* 将链表转化为 Array 并返回 */
|
||||
public int[] toArray() {
|
||||
public int[] ToArray() {
|
||||
if (front == null)
|
||||
return Array.Empty<int>();
|
||||
|
||||
ListNode node = front;
|
||||
int[] res = new int[size()];
|
||||
int[] res = new int[Size()];
|
||||
for (int i = 0; i < res.Length; i++) {
|
||||
res[i] = node.val;
|
||||
node = node.next;
|
||||
@ -1446,7 +1446,7 @@ comments: true
|
||||
```csharp title="array_queue.cs"
|
||||
/* 基于环形数组实现的队列 */
|
||||
class ArrayQueue {
|
||||
private int[] nums; // 用于存储队列元素的数组
|
||||
private readonly int[] nums; // 用于存储队列元素的数组
|
||||
private int front; // 队首指针,指向队首元素
|
||||
private int queSize; // 队列长度
|
||||
|
||||
@ -1456,56 +1456,56 @@ comments: true
|
||||
}
|
||||
|
||||
/* 获取队列的容量 */
|
||||
public int capacity() {
|
||||
public int Capacity() {
|
||||
return nums.Length;
|
||||
}
|
||||
|
||||
/* 获取队列的长度 */
|
||||
public int size() {
|
||||
public int Size() {
|
||||
return queSize;
|
||||
}
|
||||
|
||||
/* 判断队列是否为空 */
|
||||
public bool isEmpty() {
|
||||
public bool IsEmpty() {
|
||||
return queSize == 0;
|
||||
}
|
||||
|
||||
/* 入队 */
|
||||
public void push(int num) {
|
||||
if (queSize == capacity()) {
|
||||
public void Push(int num) {
|
||||
if (queSize == Capacity()) {
|
||||
Console.WriteLine("队列已满");
|
||||
return;
|
||||
}
|
||||
// 计算尾指针,指向队尾索引 + 1
|
||||
// 通过取余操作,实现 rear 越过数组尾部后回到头部
|
||||
int rear = (front + queSize) % capacity();
|
||||
int rear = (front + queSize) % Capacity();
|
||||
// 将 num 添加至队尾
|
||||
nums[rear] = num;
|
||||
queSize++;
|
||||
}
|
||||
|
||||
/* 出队 */
|
||||
public int pop() {
|
||||
int num = peek();
|
||||
public int Pop() {
|
||||
int num = Peek();
|
||||
// 队首指针向后移动一位,若越过尾部则返回到数组头部
|
||||
front = (front + 1) % capacity();
|
||||
front = (front + 1) % Capacity();
|
||||
queSize--;
|
||||
return num;
|
||||
}
|
||||
|
||||
/* 访问队首元素 */
|
||||
public int peek() {
|
||||
if (isEmpty())
|
||||
public int Peek() {
|
||||
if (IsEmpty())
|
||||
throw new Exception();
|
||||
return nums[front];
|
||||
}
|
||||
|
||||
/* 返回数组 */
|
||||
public int[] toArray() {
|
||||
public int[] ToArray() {
|
||||
// 仅转换有效长度范围内的列表元素
|
||||
int[] res = new int[queSize];
|
||||
for (int i = 0, j = front; i < queSize; i++, j++) {
|
||||
res[i] = nums[j % this.capacity()];
|
||||
res[i] = nums[j % this.Capacity()];
|
||||
}
|
||||
return res;
|
||||
}
|
||||
|
||||
@ -115,7 +115,7 @@ comments: true
|
||||
|
||||
```csharp title="stack.cs"
|
||||
/* 初始化栈 */
|
||||
Stack<int> stack = new ();
|
||||
Stack<int> stack = new();
|
||||
|
||||
/* 元素入栈 */
|
||||
stack.Push(1);
|
||||
@ -526,45 +526,46 @@ comments: true
|
||||
}
|
||||
|
||||
/* 获取栈的长度 */
|
||||
public int size() {
|
||||
public int Size() {
|
||||
return stkSize;
|
||||
}
|
||||
|
||||
/* 判断栈是否为空 */
|
||||
public bool isEmpty() {
|
||||
return size() == 0;
|
||||
public bool IsEmpty() {
|
||||
return Size() == 0;
|
||||
}
|
||||
|
||||
/* 入栈 */
|
||||
public void push(int num) {
|
||||
ListNode node = new ListNode(num);
|
||||
node.next = stackPeek;
|
||||
public void Push(int num) {
|
||||
ListNode node = new(num) {
|
||||
next = stackPeek
|
||||
};
|
||||
stackPeek = node;
|
||||
stkSize++;
|
||||
}
|
||||
|
||||
/* 出栈 */
|
||||
public int pop() {
|
||||
int num = peek();
|
||||
public int Pop() {
|
||||
int num = Peek();
|
||||
stackPeek = stackPeek.next;
|
||||
stkSize--;
|
||||
return num;
|
||||
}
|
||||
|
||||
/* 访问栈顶元素 */
|
||||
public int peek() {
|
||||
if (isEmpty())
|
||||
public int Peek() {
|
||||
if (IsEmpty())
|
||||
throw new Exception();
|
||||
return stackPeek.val;
|
||||
}
|
||||
|
||||
/* 将 List 转化为 Array 并返回 */
|
||||
public int[] toArray() {
|
||||
public int[] ToArray() {
|
||||
if (stackPeek == null)
|
||||
return Array.Empty<int>();
|
||||
|
||||
ListNode node = stackPeek;
|
||||
int[] res = new int[size()];
|
||||
int[] res = new int[Size()];
|
||||
for (int i = res.Length - 1; i >= 0; i--) {
|
||||
res[i] = node.val;
|
||||
node = node.next;
|
||||
@ -1238,45 +1239,45 @@ comments: true
|
||||
```csharp title="array_stack.cs"
|
||||
/* 基于数组实现的栈 */
|
||||
class ArrayStack {
|
||||
private List<int> stack;
|
||||
private readonly List<int> stack;
|
||||
public ArrayStack() {
|
||||
// 初始化列表(动态数组)
|
||||
stack = new();
|
||||
}
|
||||
|
||||
/* 获取栈的长度 */
|
||||
public int size() {
|
||||
return stack.Count();
|
||||
public int Size() {
|
||||
return stack.Count;
|
||||
}
|
||||
|
||||
/* 判断栈是否为空 */
|
||||
public bool isEmpty() {
|
||||
return size() == 0;
|
||||
public bool IsEmpty() {
|
||||
return Size() == 0;
|
||||
}
|
||||
|
||||
/* 入栈 */
|
||||
public void push(int num) {
|
||||
public void Push(int num) {
|
||||
stack.Add(num);
|
||||
}
|
||||
|
||||
/* 出栈 */
|
||||
public int pop() {
|
||||
if (isEmpty())
|
||||
public int Pop() {
|
||||
if (IsEmpty())
|
||||
throw new Exception();
|
||||
var val = peek();
|
||||
stack.RemoveAt(size() - 1);
|
||||
var val = Peek();
|
||||
stack.RemoveAt(Size() - 1);
|
||||
return val;
|
||||
}
|
||||
|
||||
/* 访问栈顶元素 */
|
||||
public int peek() {
|
||||
if (isEmpty())
|
||||
public int Peek() {
|
||||
if (IsEmpty())
|
||||
throw new Exception();
|
||||
return stack[size() - 1];
|
||||
return stack[Size() - 1];
|
||||
}
|
||||
|
||||
/* 将 List 转化为 Array 并返回 */
|
||||
public int[] toArray() {
|
||||
public int[] ToArray() {
|
||||
return stack.ToArray();
|
||||
}
|
||||
}
|
||||
|
||||
@ -411,7 +411,7 @@ comments: true
|
||||
```csharp title="array_binary_tree.cs"
|
||||
/* 数组表示下的二叉树类 */
|
||||
class ArrayBinaryTree {
|
||||
private List<int?> tree;
|
||||
private readonly List<int?> tree;
|
||||
|
||||
/* 构造方法 */
|
||||
public ArrayBinaryTree(List<int?> arr) {
|
||||
@ -419,80 +419,80 @@ comments: true
|
||||
}
|
||||
|
||||
/* 节点数量 */
|
||||
public int size() {
|
||||
public int Size() {
|
||||
return tree.Count;
|
||||
}
|
||||
|
||||
/* 获取索引为 i 节点的值 */
|
||||
public int? val(int i) {
|
||||
public int? Val(int i) {
|
||||
// 若索引越界,则返回 null ,代表空位
|
||||
if (i < 0 || i >= size())
|
||||
if (i < 0 || i >= Size())
|
||||
return null;
|
||||
return tree[i];
|
||||
}
|
||||
|
||||
/* 获取索引为 i 节点的左子节点的索引 */
|
||||
public int left(int i) {
|
||||
public int Left(int i) {
|
||||
return 2 * i + 1;
|
||||
}
|
||||
|
||||
/* 获取索引为 i 节点的右子节点的索引 */
|
||||
public int right(int i) {
|
||||
public int Right(int i) {
|
||||
return 2 * i + 2;
|
||||
}
|
||||
|
||||
/* 获取索引为 i 节点的父节点的索引 */
|
||||
public int parent(int i) {
|
||||
public int Parent(int i) {
|
||||
return (i - 1) / 2;
|
||||
}
|
||||
|
||||
/* 层序遍历 */
|
||||
public List<int> levelOrder() {
|
||||
List<int> res = new List<int>();
|
||||
public List<int> LevelOrder() {
|
||||
List<int> res = new();
|
||||
// 直接遍历数组
|
||||
for (int i = 0; i < size(); i++) {
|
||||
if (val(i).HasValue)
|
||||
res.Add(val(i).Value);
|
||||
for (int i = 0; i < Size(); i++) {
|
||||
if (Val(i).HasValue)
|
||||
res.Add(Val(i).Value);
|
||||
}
|
||||
return res;
|
||||
}
|
||||
|
||||
/* 深度优先遍历 */
|
||||
private void dfs(int i, string order, List<int> res) {
|
||||
private void Dfs(int i, string order, List<int> res) {
|
||||
// 若为空位,则返回
|
||||
if (!val(i).HasValue)
|
||||
if (!Val(i).HasValue)
|
||||
return;
|
||||
// 前序遍历
|
||||
if (order == "pre")
|
||||
res.Add(val(i).Value);
|
||||
dfs(left(i), order, res);
|
||||
res.Add(Val(i).Value);
|
||||
Dfs(Left(i), order, res);
|
||||
// 中序遍历
|
||||
if (order == "in")
|
||||
res.Add(val(i).Value);
|
||||
dfs(right(i), order, res);
|
||||
res.Add(Val(i).Value);
|
||||
Dfs(Right(i), order, res);
|
||||
// 后序遍历
|
||||
if (order == "post")
|
||||
res.Add(val(i).Value);
|
||||
res.Add(Val(i).Value);
|
||||
}
|
||||
|
||||
/* 前序遍历 */
|
||||
public List<int> preOrder() {
|
||||
List<int> res = new List<int>();
|
||||
dfs(0, "pre", res);
|
||||
public List<int> PreOrder() {
|
||||
List<int> res = new();
|
||||
Dfs(0, "pre", res);
|
||||
return res;
|
||||
}
|
||||
|
||||
/* 中序遍历 */
|
||||
public List<int> inOrder() {
|
||||
List<int> res = new List<int>();
|
||||
dfs(0, "in", res);
|
||||
public List<int> InOrder() {
|
||||
List<int> res = new();
|
||||
Dfs(0, "in", res);
|
||||
return res;
|
||||
}
|
||||
|
||||
/* 后序遍历 */
|
||||
public List<int> postOrder() {
|
||||
List<int> res = new List<int>();
|
||||
dfs(0, "post", res);
|
||||
public List<int> PostOrder() {
|
||||
List<int> res = new();
|
||||
Dfs(0, "post", res);
|
||||
return res;
|
||||
}
|
||||
}
|
||||
|
||||
@ -271,15 +271,15 @@ AVL 树既是二叉搜索树也是平衡二叉树,同时满足这两类二叉
|
||||
|
||||
```csharp title="avl_tree.cs"
|
||||
/* 获取节点高度 */
|
||||
int height(TreeNode? node) {
|
||||
int Height(TreeNode? node) {
|
||||
// 空节点高度为 -1 ,叶节点高度为 0
|
||||
return node == null ? -1 : node.height;
|
||||
}
|
||||
|
||||
/* 更新节点高度 */
|
||||
void updateHeight(TreeNode node) {
|
||||
void UpdateHeight(TreeNode node) {
|
||||
// 节点高度等于最高子树高度 + 1
|
||||
node.height = Math.Max(height(node.left), height(node.right)) + 1;
|
||||
node.height = Math.Max(Height(node.left), Height(node.right)) + 1;
|
||||
}
|
||||
```
|
||||
|
||||
@ -485,11 +485,11 @@ AVL 树既是二叉搜索树也是平衡二叉树,同时满足这两类二叉
|
||||
|
||||
```csharp title="avl_tree.cs"
|
||||
/* 获取平衡因子 */
|
||||
int balanceFactor(TreeNode? node) {
|
||||
int BalanceFactor(TreeNode? node) {
|
||||
// 空节点平衡因子为 0
|
||||
if (node == null) return 0;
|
||||
// 节点平衡因子 = 左子树高度 - 右子树高度
|
||||
return height(node.left) - height(node.right);
|
||||
return Height(node.left) - Height(node.right);
|
||||
}
|
||||
```
|
||||
|
||||
@ -690,15 +690,15 @@ AVL 树的特点在于“旋转”操作,它能够在不影响二叉树的中
|
||||
|
||||
```csharp title="avl_tree.cs"
|
||||
/* 右旋操作 */
|
||||
TreeNode? rightRotate(TreeNode? node) {
|
||||
TreeNode? RightRotate(TreeNode? node) {
|
||||
TreeNode? child = node.left;
|
||||
TreeNode? grandChild = child?.right;
|
||||
// 以 child 为原点,将 node 向右旋转
|
||||
child.right = node;
|
||||
node.left = grandChild;
|
||||
// 更新节点高度
|
||||
updateHeight(node);
|
||||
updateHeight(child);
|
||||
UpdateHeight(node);
|
||||
UpdateHeight(child);
|
||||
// 返回旋转后子树的根节点
|
||||
return child;
|
||||
}
|
||||
@ -927,15 +927,15 @@ AVL 树的特点在于“旋转”操作,它能够在不影响二叉树的中
|
||||
|
||||
```csharp title="avl_tree.cs"
|
||||
/* 左旋操作 */
|
||||
TreeNode? leftRotate(TreeNode? node) {
|
||||
TreeNode? LeftRotate(TreeNode? node) {
|
||||
TreeNode? child = node.right;
|
||||
TreeNode? grandChild = child?.left;
|
||||
// 以 child 为原点,将 node 向左旋转
|
||||
child.left = node;
|
||||
node.right = grandChild;
|
||||
// 更新节点高度
|
||||
updateHeight(node);
|
||||
updateHeight(child);
|
||||
UpdateHeight(node);
|
||||
UpdateHeight(child);
|
||||
// 返回旋转后子树的根节点
|
||||
return child;
|
||||
}
|
||||
@ -1233,29 +1233,29 @@ AVL 树的特点在于“旋转”操作,它能够在不影响二叉树的中
|
||||
|
||||
```csharp title="avl_tree.cs"
|
||||
/* 执行旋转操作,使该子树重新恢复平衡 */
|
||||
TreeNode? rotate(TreeNode? node) {
|
||||
TreeNode? Rotate(TreeNode? node) {
|
||||
// 获取节点 node 的平衡因子
|
||||
int balanceFactorInt = balanceFactor(node);
|
||||
int balanceFactorInt = BalanceFactor(node);
|
||||
// 左偏树
|
||||
if (balanceFactorInt > 1) {
|
||||
if (balanceFactor(node.left) >= 0) {
|
||||
if (BalanceFactor(node.left) >= 0) {
|
||||
// 右旋
|
||||
return rightRotate(node);
|
||||
return RightRotate(node);
|
||||
} else {
|
||||
// 先左旋后右旋
|
||||
node.left = leftRotate(node?.left);
|
||||
return rightRotate(node);
|
||||
node.left = LeftRotate(node?.left);
|
||||
return RightRotate(node);
|
||||
}
|
||||
}
|
||||
// 右偏树
|
||||
if (balanceFactorInt < -1) {
|
||||
if (balanceFactor(node.right) <= 0) {
|
||||
if (BalanceFactor(node.right) <= 0) {
|
||||
// 左旋
|
||||
return leftRotate(node);
|
||||
return LeftRotate(node);
|
||||
} else {
|
||||
// 先右旋后左旋
|
||||
node.right = rightRotate(node?.right);
|
||||
return leftRotate(node);
|
||||
node.right = RightRotate(node?.right);
|
||||
return LeftRotate(node);
|
||||
}
|
||||
}
|
||||
// 平衡树,无须旋转,直接返回
|
||||
@ -1630,23 +1630,23 @@ AVL 树的节点插入操作与二叉搜索树在主体上类似。唯一的区
|
||||
|
||||
```csharp title="avl_tree.cs"
|
||||
/* 插入节点 */
|
||||
void insert(int val) {
|
||||
root = insertHelper(root, val);
|
||||
void Insert(int val) {
|
||||
root = InsertHelper(root, val);
|
||||
}
|
||||
|
||||
/* 递归插入节点(辅助方法) */
|
||||
TreeNode? insertHelper(TreeNode? node, int val) {
|
||||
TreeNode? InsertHelper(TreeNode? node, int val) {
|
||||
if (node == null) return new TreeNode(val);
|
||||
/* 1. 查找插入位置,并插入节点 */
|
||||
if (val < node.val)
|
||||
node.left = insertHelper(node.left, val);
|
||||
node.left = InsertHelper(node.left, val);
|
||||
else if (val > node.val)
|
||||
node.right = insertHelper(node.right, val);
|
||||
node.right = InsertHelper(node.right, val);
|
||||
else
|
||||
return node; // 重复节点不插入,直接返回
|
||||
updateHeight(node); // 更新节点高度
|
||||
UpdateHeight(node); // 更新节点高度
|
||||
/* 2. 执行旋转操作,使该子树重新恢复平衡 */
|
||||
node = rotate(node);
|
||||
node = Rotate(node);
|
||||
// 返回子树的根节点
|
||||
return node;
|
||||
}
|
||||
@ -2034,21 +2034,21 @@ AVL 树的节点插入操作与二叉搜索树在主体上类似。唯一的区
|
||||
|
||||
```csharp title="avl_tree.cs"
|
||||
/* 删除节点 */
|
||||
void remove(int val) {
|
||||
root = removeHelper(root, val);
|
||||
void Remove(int val) {
|
||||
root = RemoveHelper(root, val);
|
||||
}
|
||||
|
||||
/* 递归删除节点(辅助方法) */
|
||||
TreeNode? removeHelper(TreeNode? node, int val) {
|
||||
TreeNode? RemoveHelper(TreeNode? node, int val) {
|
||||
if (node == null) return null;
|
||||
/* 1. 查找节点,并删除之 */
|
||||
if (val < node.val)
|
||||
node.left = removeHelper(node.left, val);
|
||||
node.left = RemoveHelper(node.left, val);
|
||||
else if (val > node.val)
|
||||
node.right = removeHelper(node.right, val);
|
||||
node.right = RemoveHelper(node.right, val);
|
||||
else {
|
||||
if (node.left == null || node.right == null) {
|
||||
TreeNode? child = node.left != null ? node.left : node.right;
|
||||
TreeNode? child = node.left ?? node.right;
|
||||
// 子节点数量 = 0 ,直接删除 node 并返回
|
||||
if (child == null)
|
||||
return null;
|
||||
@ -2061,13 +2061,13 @@ AVL 树的节点插入操作与二叉搜索树在主体上类似。唯一的区
|
||||
while (temp.left != null) {
|
||||
temp = temp.left;
|
||||
}
|
||||
node.right = removeHelper(node.right, temp.val);
|
||||
node.right = RemoveHelper(node.right, temp.val);
|
||||
node.val = temp.val;
|
||||
}
|
||||
}
|
||||
updateHeight(node); // 更新节点高度
|
||||
UpdateHeight(node); // 更新节点高度
|
||||
/* 2. 执行旋转操作,使该子树重新恢复平衡 */
|
||||
node = rotate(node);
|
||||
node = Rotate(node);
|
||||
// 返回子树的根节点
|
||||
return node;
|
||||
}
|
||||
|
||||
@ -111,7 +111,7 @@ comments: true
|
||||
|
||||
```csharp title="binary_search_tree.cs"
|
||||
/* 查找节点 */
|
||||
TreeNode? search(int num) {
|
||||
TreeNode? Search(int num) {
|
||||
TreeNode? cur = root;
|
||||
// 循环查找,越过叶节点后跳出
|
||||
while (cur != null) {
|
||||
@ -434,7 +434,7 @@ comments: true
|
||||
|
||||
```csharp title="binary_search_tree.cs"
|
||||
/* 插入节点 */
|
||||
void insert(int num) {
|
||||
void Insert(int num) {
|
||||
// 若树为空,则初始化根节点
|
||||
if (root == null) {
|
||||
root = new TreeNode(num);
|
||||
@ -456,7 +456,7 @@ comments: true
|
||||
}
|
||||
|
||||
// 插入节点
|
||||
TreeNode node = new TreeNode(num);
|
||||
TreeNode node = new(num);
|
||||
if (pre != null) {
|
||||
if (pre.val < num)
|
||||
pre.right = node;
|
||||
@ -953,7 +953,7 @@ comments: true
|
||||
|
||||
```csharp title="binary_search_tree.cs"
|
||||
/* 删除节点 */
|
||||
void remove(int num) {
|
||||
void Remove(int num) {
|
||||
// 若树为空,直接提前返回
|
||||
if (root == null)
|
||||
return;
|
||||
@ -977,7 +977,7 @@ comments: true
|
||||
// 子节点数量 = 0 or 1
|
||||
if (cur.left == null || cur.right == null) {
|
||||
// 当子节点数量 = 0 / 1 时, child = null / 该子节点
|
||||
TreeNode? child = cur.left != null ? cur.left : cur.right;
|
||||
TreeNode? child = cur.left ?? cur.right;
|
||||
// 删除节点 cur
|
||||
if (cur != root) {
|
||||
if (pre.left == cur)
|
||||
@ -997,7 +997,7 @@ comments: true
|
||||
tmp = tmp.left;
|
||||
}
|
||||
// 递归删除节点 tmp
|
||||
remove(tmp.val);
|
||||
Remove(tmp.val);
|
||||
// 用 tmp 覆盖 cur
|
||||
cur.val = tmp.val;
|
||||
}
|
||||
|
||||
@ -279,11 +279,11 @@ comments: true
|
||||
```csharp title="binary_tree.cs"
|
||||
/* 初始化二叉树 */
|
||||
// 初始化节点
|
||||
TreeNode n1 = new TreeNode(1);
|
||||
TreeNode n2 = new TreeNode(2);
|
||||
TreeNode n3 = new TreeNode(3);
|
||||
TreeNode n4 = new TreeNode(4);
|
||||
TreeNode n5 = new TreeNode(5);
|
||||
TreeNode n1 = new(1);
|
||||
TreeNode n2 = new(2);
|
||||
TreeNode n3 = new(3);
|
||||
TreeNode n4 = new(4);
|
||||
TreeNode n5 = new(5);
|
||||
// 构建引用指向(即指针)
|
||||
n1.left = n2;
|
||||
n1.right = n3;
|
||||
@ -461,7 +461,7 @@ comments: true
|
||||
|
||||
```csharp title="binary_tree.cs"
|
||||
/* 插入与删除节点 */
|
||||
TreeNode P = new TreeNode(0);
|
||||
TreeNode P = new(0);
|
||||
// 在 n1 -> n2 中间插入节点 P
|
||||
n1.left = P;
|
||||
P.left = n2;
|
||||
|
||||
@ -91,7 +91,7 @@ comments: true
|
||||
|
||||
```csharp title="binary_tree_bfs.cs"
|
||||
/* 层序遍历 */
|
||||
List<int> levelOrder(TreeNode root) {
|
||||
List<int> LevelOrder(TreeNode root) {
|
||||
// 初始化队列,加入根节点
|
||||
Queue<TreeNode> queue = new();
|
||||
queue.Enqueue(root);
|
||||
@ -446,29 +446,29 @@ comments: true
|
||||
|
||||
```csharp title="binary_tree_dfs.cs"
|
||||
/* 前序遍历 */
|
||||
void preOrder(TreeNode? root) {
|
||||
void PreOrder(TreeNode? root) {
|
||||
if (root == null) return;
|
||||
// 访问优先级:根节点 -> 左子树 -> 右子树
|
||||
list.Add(root.val);
|
||||
preOrder(root.left);
|
||||
preOrder(root.right);
|
||||
PreOrder(root.left);
|
||||
PreOrder(root.right);
|
||||
}
|
||||
|
||||
/* 中序遍历 */
|
||||
void inOrder(TreeNode? root) {
|
||||
void InOrder(TreeNode? root) {
|
||||
if (root == null) return;
|
||||
// 访问优先级:左子树 -> 根节点 -> 右子树
|
||||
inOrder(root.left);
|
||||
InOrder(root.left);
|
||||
list.Add(root.val);
|
||||
inOrder(root.right);
|
||||
InOrder(root.right);
|
||||
}
|
||||
|
||||
/* 后序遍历 */
|
||||
void postOrder(TreeNode? root) {
|
||||
void PostOrder(TreeNode? root) {
|
||||
if (root == null) return;
|
||||
// 访问优先级:左子树 -> 右子树 -> 根节点
|
||||
postOrder(root.left);
|
||||
postOrder(root.right);
|
||||
PostOrder(root.left);
|
||||
PostOrder(root.right);
|
||||
list.Add(root.val);
|
||||
}
|
||||
```
|
||||
|
||||
Loading…
Reference in New Issue
Block a user