build
This commit is contained in:
parent
8abc6ce1d5
commit
b6ebc67824
@ -213,7 +213,78 @@ comments: true
|
||||
=== "Python"
|
||||
|
||||
```python title="graph_adjacency_matrix.py"
|
||||
[class]{GraphAdjMat}-[func]{}
|
||||
""" 基于邻接矩阵实现的无向图类 """
|
||||
class GraphAdjMat:
|
||||
# 顶点列表,元素代表“顶点值”,索引代表“顶点索引”
|
||||
vertices = []
|
||||
# 邻接矩阵,行列索引对应“顶点索引”
|
||||
adj_mat = []
|
||||
|
||||
""" 构造方法 """
|
||||
def __init__(self, vertices, edges):
|
||||
self.vertices = []
|
||||
self.adj_mat = []
|
||||
# 添加顶点
|
||||
for val in vertices:
|
||||
self.add_vertex(val)
|
||||
# 添加边
|
||||
# 请注意,edges 元素代表顶点索引,即对应 vertices 元素索引
|
||||
for e in edges:
|
||||
self.add_edge(e[0], e[1])
|
||||
|
||||
""" 获取顶点数量 """
|
||||
def size(self):
|
||||
return len(self.vertices)
|
||||
|
||||
""" 添加顶点 """
|
||||
def add_vertex(self, val):
|
||||
n = self.size()
|
||||
# 向顶点列表中添加新顶点的值
|
||||
self.vertices.append(val)
|
||||
# 在邻接矩阵中添加一行
|
||||
new_row = [0]*n
|
||||
self.adj_mat.append(new_row)
|
||||
# 在邻接矩阵中添加一列
|
||||
for row in self.adj_mat:
|
||||
row.append(0)
|
||||
|
||||
|
||||
""" 删除顶点 """
|
||||
def remove_vertex(self, index):
|
||||
if index >= self.size():
|
||||
raise IndexError()
|
||||
# 在顶点列表中移除索引 index 的顶点
|
||||
self.vertices.pop(index)
|
||||
# 在邻接矩阵中删除索引 index 的行
|
||||
self.adj_mat.pop(index)
|
||||
# 在邻接矩阵中删除索引 index 的列
|
||||
for row in self.adj_mat:
|
||||
row.pop(index)
|
||||
|
||||
""" 添加边 """
|
||||
# 参数 i, j 对应 vertices 元素索引
|
||||
def add_edge(self, i, j):
|
||||
# 索引越界与相等处理
|
||||
if i < 0 or j < 0 or i >= self.size() or j >= self.size() or i == j:
|
||||
raise IndexError()
|
||||
# 在无向图中,邻接矩阵沿主对角线对称,即满足 (i, j) == (j, i)
|
||||
self.adj_mat[i][j] = 1
|
||||
self.adj_mat[j][i] = 1
|
||||
|
||||
""" 删除边 """
|
||||
# 参数 i, j 对应 vertices 元素索引
|
||||
def remove_edge(self, i, j):
|
||||
# 索引越界与相等处理
|
||||
if i < 0 or j < 0 or i >= self.size() or j >= self.size() or i == j:
|
||||
raise IndexError()
|
||||
self.adj_mat[i][j] = 0
|
||||
self.adj_mat[j][i] = 0
|
||||
|
||||
""" 打印邻接矩阵 """
|
||||
def print(self):
|
||||
print("顶点列表 =", self.vertices)
|
||||
print("邻接矩阵 =")
|
||||
print_matrix(self.adj_mat)
|
||||
```
|
||||
|
||||
=== "Go"
|
||||
@ -887,7 +958,64 @@ comments: true
|
||||
=== "Python"
|
||||
|
||||
```python title="graph_adjacency_list.py"
|
||||
[class]{GraphAdjList}-[func]{}
|
||||
""" 基于邻接表实现的无向图类 """
|
||||
class GraphAdjList:
|
||||
# 邻接表,key: 顶点,value:该顶点的所有邻接结点
|
||||
adj_list = {}
|
||||
|
||||
""" 构造方法 """
|
||||
def __init__(self, edges: List[List[Vertex]]) -> None:
|
||||
self.adj_list = {}
|
||||
# 添加所有顶点和边
|
||||
for edge in edges:
|
||||
self.add_vertex(edge[0])
|
||||
self.add_vertex(edge[1])
|
||||
self.add_edge(edge[0], edge[1])
|
||||
|
||||
""" 获取顶点数量 """
|
||||
def size(self) -> int:
|
||||
return len(self.adj_list)
|
||||
|
||||
""" 添加边 """
|
||||
def add_edge(self, vet1: Vertex, vet2: Vertex) -> None:
|
||||
if vet1 not in self.adj_list or vet2 not in self.adj_list or vet1 == vet2:
|
||||
raise ValueError
|
||||
# 添加边 vet1 - vet2
|
||||
self.adj_list[vet1].append(vet2)
|
||||
self.adj_list[vet2].append(vet1)
|
||||
|
||||
""" 删除边 """
|
||||
def remove_edge(self, vet1: Vertex, vet2: Vertex) -> None:
|
||||
if vet1 not in self.adj_list or vet2 not in self.adj_list or vet1 == vet2:
|
||||
raise ValueError
|
||||
# 删除边 vet1 - vet2
|
||||
self.adj_list[vet1].remove(vet2)
|
||||
self.adj_list[vet2].remove(vet1)
|
||||
|
||||
""" 添加顶点 """
|
||||
def add_vertex(self, vet: Vertex) -> None:
|
||||
if vet in self.adj_list:
|
||||
return
|
||||
# 在邻接表中添加一个新链表
|
||||
self.adj_list[vet] = []
|
||||
|
||||
""" 删除顶点 """
|
||||
def remove_vertex(self, vet: Vertex) -> None:
|
||||
if vet not in self.adj_list:
|
||||
raise ValueError
|
||||
# 在邻接表中删除顶点 vet 对应的链表
|
||||
self.adj_list.pop(vet)
|
||||
# 遍历其它顶点的链表,删除所有包含 vet 的边
|
||||
for vertex in self.adj_list:
|
||||
if vet in self.adj_list[vertex]:
|
||||
self.adj_list[vertex].remove(vet)
|
||||
|
||||
""" 打印邻接表 """
|
||||
def print(self) -> None:
|
||||
print("邻接表 =")
|
||||
for vertex in self.adj_list:
|
||||
tmp = [v.val for v in self.adj_list[vertex]]
|
||||
print(f"{vertex.val}: {tmp},")
|
||||
```
|
||||
|
||||
=== "Go"
|
||||
@ -1246,10 +1374,10 @@ comments: true
|
||||
class GraphAdjList {
|
||||
// 邻接表,使用哈希表来代替链表,以提升删除边、删除顶点的效率
|
||||
// 请注意,adjList 中的元素是 Vertex 对象
|
||||
private var adjList: [Vertex: [Vertex]]
|
||||
public private(set) var adjList: [Vertex: [Vertex]]
|
||||
|
||||
/* 构造方法 */
|
||||
init(edges: [[Vertex]]) {
|
||||
public init(edges: [[Vertex]]) {
|
||||
adjList = [:]
|
||||
// 添加所有顶点和边
|
||||
for edge in edges {
|
||||
@ -1260,12 +1388,12 @@ comments: true
|
||||
}
|
||||
|
||||
/* 获取顶点数量 */
|
||||
func size() -> Int {
|
||||
public func size() -> Int {
|
||||
adjList.count
|
||||
}
|
||||
|
||||
/* 添加边 */
|
||||
func addEdge(vet1: Vertex, vet2: Vertex) {
|
||||
public func addEdge(vet1: Vertex, vet2: Vertex) {
|
||||
if adjList[vet1] == nil || adjList[vet2] == nil || vet1 == vet2 {
|
||||
fatalError("参数错误")
|
||||
}
|
||||
@ -1275,7 +1403,7 @@ comments: true
|
||||
}
|
||||
|
||||
/* 删除边 */
|
||||
func removeEdge(vet1: Vertex, vet2: Vertex) {
|
||||
public func removeEdge(vet1: Vertex, vet2: Vertex) {
|
||||
if adjList[vet1] == nil || adjList[vet2] == nil || vet1 == vet2 {
|
||||
fatalError("参数错误")
|
||||
}
|
||||
@ -1285,7 +1413,7 @@ comments: true
|
||||
}
|
||||
|
||||
/* 添加顶点 */
|
||||
func addVertex(vet: Vertex) {
|
||||
public func addVertex(vet: Vertex) {
|
||||
if adjList[vet] != nil {
|
||||
return
|
||||
}
|
||||
@ -1294,7 +1422,7 @@ comments: true
|
||||
}
|
||||
|
||||
/* 删除顶点 */
|
||||
func removeVertex(vet: Vertex) {
|
||||
public func removeVertex(vet: Vertex) {
|
||||
if adjList[vet] == nil {
|
||||
fatalError("参数错误")
|
||||
}
|
||||
@ -1307,7 +1435,7 @@ comments: true
|
||||
}
|
||||
|
||||
/* 打印邻接表 */
|
||||
func print() {
|
||||
public func print() {
|
||||
Swift.print("邻接表 =")
|
||||
for entry in adjList {
|
||||
var tmp: [Int] = []
|
||||
|
@ -66,7 +66,27 @@ BFS 常借助「队列」来实现。队列具有“先入先出”的性质,
|
||||
=== "Python"
|
||||
|
||||
```python title="graph_bfs.py"
|
||||
|
||||
""" 广度优先遍历 BFS """
|
||||
# 使用邻接表来表示图,以便获取指定顶点的所有邻接顶点
|
||||
def graph_bfs(graph: GraphAdjList, start_vet: Vertex) -> List[Vertex]:
|
||||
# 顶点遍历序列
|
||||
res = []
|
||||
# 哈希表,用于记录已被访问过的顶点
|
||||
visited = set([start_vet])
|
||||
# 队列用于实现 BFS
|
||||
que = collections.deque([start_vet])
|
||||
# 以顶点 vet 为起点,循环直至访问完所有顶点
|
||||
while len(que) > 0:
|
||||
vet = que.popleft() # 队首顶点出队
|
||||
res.append(vet) # 记录访问顶点
|
||||
# 遍历该顶点的所有邻接顶点
|
||||
for adj_vet in graph.adj_list[vet]:
|
||||
if adj_vet in visited:
|
||||
continue # 跳过已被访问过的顶点
|
||||
que.append(adj_vet) # 只入队未访问的顶点
|
||||
visited.add(adj_vet) # 标记该顶点已被访问
|
||||
# 返回顶点遍历序列
|
||||
return res
|
||||
```
|
||||
|
||||
=== "Go"
|
||||
@ -102,7 +122,31 @@ BFS 常借助「队列」来实现。队列具有“先入先出”的性质,
|
||||
=== "Swift"
|
||||
|
||||
```swift title="graph_bfs.swift"
|
||||
|
||||
/* 广度优先遍历 BFS */
|
||||
// 使用邻接表来表示图,以便获取指定顶点的所有邻接顶点
|
||||
func graphBFS(graph: GraphAdjList, startVet: Vertex) -> [Vertex] {
|
||||
// 顶点遍历序列
|
||||
var res: [Vertex] = []
|
||||
// 哈希表,用于记录已被访问过的顶点
|
||||
var visited: Set<Vertex> = [startVet]
|
||||
// 队列用于实现 BFS
|
||||
var que: [Vertex] = [startVet]
|
||||
// 以顶点 vet 为起点,循环直至访问完所有顶点
|
||||
while !que.isEmpty {
|
||||
let vet = que.removeFirst() // 队首顶点出队
|
||||
res.append(vet) // 记录访问顶点
|
||||
// 遍历该顶点的所有邻接顶点
|
||||
for adjVet in graph.adjList[vet] ?? [] {
|
||||
if visited.contains(adjVet) {
|
||||
continue // 跳过已被访问过的顶点
|
||||
}
|
||||
que.append(adjVet) // 只入队未访问的顶点
|
||||
visited.insert(adjVet) // 标记该顶点已被访问
|
||||
}
|
||||
}
|
||||
// 返回顶点遍历序列
|
||||
return res
|
||||
}
|
||||
```
|
||||
|
||||
=== "Zig"
|
||||
@ -203,7 +247,26 @@ BFS 常借助「队列」来实现。队列具有“先入先出”的性质,
|
||||
=== "Python"
|
||||
|
||||
```python title="graph_dfs.py"
|
||||
""" 深度优先遍历 DFS 辅助函数 """
|
||||
def dfs(graph: GraphAdjList, visited: Set[Vertex], res: List[Vertex], vet: Vertex):
|
||||
res.append(vet) # 记录访问顶点
|
||||
visited.add(vet) # 标记该顶点已被访问
|
||||
# 遍历该顶点的所有邻接顶点
|
||||
for adjVet in graph.adj_list[vet]:
|
||||
if adjVet in visited:
|
||||
continue # 跳过已被访问过的顶点
|
||||
# 递归访问邻接顶点
|
||||
dfs(graph, visited, res, adjVet)
|
||||
|
||||
""" 深度优先遍历 DFS """
|
||||
# 使用邻接表来表示图,以便获取指定顶点的所有邻接顶点
|
||||
def graph_dfs(graph: GraphAdjList, start_vet: Vertex) -> List[Vertex]:
|
||||
# 顶点遍历序列
|
||||
res = []
|
||||
# 哈希表,用于记录已被访问过的顶点
|
||||
visited = set()
|
||||
dfs(graph, visited, res, start_vet)
|
||||
return res
|
||||
```
|
||||
|
||||
=== "Go"
|
||||
@ -239,7 +302,30 @@ BFS 常借助「队列」来实现。队列具有“先入先出”的性质,
|
||||
=== "Swift"
|
||||
|
||||
```swift title="graph_dfs.swift"
|
||||
/* 深度优先遍历 DFS 辅助函数 */
|
||||
func dfs(graph: GraphAdjList, visited: inout Set<Vertex>, res: inout [Vertex], vet: Vertex) {
|
||||
res.append(vet) // 记录访问顶点
|
||||
visited.insert(vet) // 标记该顶点已被访问
|
||||
// 遍历该顶点的所有邻接顶点
|
||||
for adjVet in graph.adjList[vet] ?? [] {
|
||||
if visited.contains(adjVet) {
|
||||
continue // 跳过已被访问过的顶点
|
||||
}
|
||||
// 递归访问邻接顶点
|
||||
dfs(graph: graph, visited: &visited, res: &res, vet: adjVet)
|
||||
}
|
||||
}
|
||||
|
||||
/* 深度优先遍历 DFS */
|
||||
// 使用邻接表来表示图,以便获取指定顶点的所有邻接顶点
|
||||
func graphDFS(graph: GraphAdjList, startVet: Vertex) -> [Vertex] {
|
||||
// 顶点遍历序列
|
||||
var res: [Vertex] = []
|
||||
// 哈希表,用于记录已被访问过的顶点
|
||||
var visited: Set<Vertex> = []
|
||||
dfs(graph: graph, visited: &visited, res: &res, vet: startVet)
|
||||
return res
|
||||
}
|
||||
```
|
||||
|
||||
=== "Zig"
|
||||
|
@ -52,7 +52,7 @@ comments: true
|
||||
// 初始化小顶堆
|
||||
Queue<Integer> minHeap = new PriorityQueue<>();
|
||||
// 初始化大顶堆(使用 lambda 表达式修改 Comparator 即可)
|
||||
Queue<Integer> maxHeap = new PriorityQueue<>((a, b) -> { return b - a; });
|
||||
Queue<Integer> maxHeap = new PriorityQueue<>((a, b) -> b - a);
|
||||
|
||||
/* 元素入堆 */
|
||||
maxHeap.add(1);
|
||||
@ -123,7 +123,41 @@ comments: true
|
||||
=== "Python"
|
||||
|
||||
```python title="heap.py"
|
||||
# 初始化小顶堆
|
||||
min_heap, flag = [], 1
|
||||
# 初始化大顶堆
|
||||
max_heap, flag = [], -1
|
||||
|
||||
# Python 的 heapq 模块默认实现小顶堆
|
||||
# 考虑将“元素取负”后再入堆,这样就可以将大小关系颠倒,从而实现大顶堆
|
||||
# 在本示例中,flag = 1 时对应小顶堆,flag = -1 时对应大顶堆
|
||||
""" 元素入堆 """
|
||||
heapq.heappush(max_heap, flag * 1)
|
||||
heapq.heappush(max_heap, flag * 3)
|
||||
heapq.heappush(max_heap, flag * 2)
|
||||
heapq.heappush(max_heap, flag * 5)
|
||||
heapq.heappush(max_heap, flag * 4)
|
||||
|
||||
""" 获取堆顶元素 """
|
||||
peek = flag * max_heap[0] # 5
|
||||
|
||||
""" 堆顶元素出堆 """
|
||||
# 出堆元素会形成一个从大到小的序列
|
||||
val = flag * heapq.heappop(max_heap) # 5
|
||||
val = flag * heapq.heappop(max_heap) # 4
|
||||
val = flag * heapq.heappop(max_heap) # 3
|
||||
val = flag * heapq.heappop(max_heap) # 2
|
||||
val = flag * heapq.heappop(max_heap) # 1
|
||||
|
||||
""" 获取堆大小 """
|
||||
size = len(max_heap)
|
||||
|
||||
""" 判断堆是否为空 """
|
||||
is_empty = not max_heap
|
||||
|
||||
""" 输入列表并建堆 """
|
||||
min_heap = [1, 3, 2, 5, 4]
|
||||
heapq.heapify(min_heap)
|
||||
```
|
||||
|
||||
=== "Go"
|
||||
@ -329,7 +363,17 @@ comments: true
|
||||
=== "Python"
|
||||
|
||||
```python title="my_heap.py"
|
||||
""" 获取左子结点索引 """
|
||||
def left(self, i: int) -> int:
|
||||
return 2 * i + 1
|
||||
|
||||
""" 获取右子结点索引 """
|
||||
def right(self, i: int) -> int:
|
||||
return 2 * i + 2
|
||||
|
||||
""" 获取父结点索引 """
|
||||
def parent(self, i: int) -> int:
|
||||
return (i - 1) // 2 # 向下整除
|
||||
```
|
||||
|
||||
=== "Go"
|
||||
@ -486,7 +530,9 @@ comments: true
|
||||
=== "Python"
|
||||
|
||||
```python title="my_heap.py"
|
||||
|
||||
""" 访问堆顶元素 """
|
||||
def peek(self) -> int:
|
||||
return self.max_heap[0]
|
||||
```
|
||||
|
||||
=== "Go"
|
||||
@ -633,7 +679,25 @@ comments: true
|
||||
=== "Python"
|
||||
|
||||
```python title="my_heap.py"
|
||||
""" 元素入堆 """
|
||||
def push(self, val: int):
|
||||
# 添加结点
|
||||
self.max_heap.append(val)
|
||||
# 从底至顶堆化
|
||||
self.sift_up(self.size() - 1)
|
||||
|
||||
""" 从结点 i 开始,从底至顶堆化 """
|
||||
def sift_up(self, i: int):
|
||||
while True:
|
||||
# 获取结点 i 的父结点
|
||||
p = self.parent(i)
|
||||
# 当“越过根结点”或“结点无需修复”时,结束堆化
|
||||
if p < 0 or self.max_heap[i] <= self.max_heap[p]:
|
||||
break
|
||||
# 交换两结点
|
||||
self.swap(i, p)
|
||||
# 循环向上堆化
|
||||
i = p
|
||||
```
|
||||
|
||||
=== "Go"
|
||||
@ -929,7 +993,35 @@ comments: true
|
||||
=== "Python"
|
||||
|
||||
```python title="my_heap.py"
|
||||
""" 元素出堆 """
|
||||
def poll(self) -> int:
|
||||
# 判空处理
|
||||
assert not self.is_empty()
|
||||
# 交换根结点与最右叶结点(即交换首元素与尾元素)
|
||||
self.swap(0, self.size() - 1)
|
||||
# 删除结点
|
||||
val = self.max_heap.pop()
|
||||
# 从顶至底堆化
|
||||
self.sift_down(0)
|
||||
# 返回堆顶元素
|
||||
return val
|
||||
|
||||
""" 从结点 i 开始,从顶至底堆化 """
|
||||
def sift_down(self, i: int):
|
||||
while True:
|
||||
# 判断结点 i, l, r 中值最大的结点,记为 ma
|
||||
l, r, ma = self.left(i), self.right(i), i
|
||||
if l < self.size() and self.max_heap[l] > self.max_heap[ma]:
|
||||
ma = l
|
||||
if r < self.size() and self.max_heap[r] > self.max_heap[ma]:
|
||||
ma = r
|
||||
# 若结点 i 最大或索引 l, r 越界,则无需继续堆化,跳出
|
||||
if ma == i:
|
||||
break
|
||||
# 交换两结点
|
||||
self.swap(i, ma)
|
||||
# 循环向下堆化
|
||||
i = ma
|
||||
```
|
||||
|
||||
=== "Go"
|
||||
@ -1216,7 +1308,13 @@ comments: true
|
||||
=== "Python"
|
||||
|
||||
```python title="my_heap.py"
|
||||
|
||||
""" 构造方法 """
|
||||
def __init__(self, nums: List[int]):
|
||||
# 将列表元素原封不动添加进堆
|
||||
self.max_heap = nums
|
||||
# 堆化除叶结点以外的其他所有结点
|
||||
for i in range(self.parent(self.size() - 1), -1, -1):
|
||||
self.sift_down(i)
|
||||
```
|
||||
|
||||
=== "Go"
|
||||
|
Loading…
Reference in New Issue
Block a user