Add TypeScript code and docs to AVL tree and the coding style for Typescript and JavaScript (#342)
* Add TypeScript code and docs to AVL tree and update JavaScript style * Update the coding style for Typescript and JavaScript
This commit is contained in:
parent
7f4243ab77
commit
b14568151c
@ -6,7 +6,7 @@
|
||||
|
||||
/* 生成一个数组,元素为 { 1, 2, ..., n },顺序被打乱 */
|
||||
function randomNumbers(n) {
|
||||
let nums = Array(n);
|
||||
const nums = Array(n);
|
||||
// 生成数组 nums = { 1, 2, 3, ..., n }
|
||||
for (let i = 0; i < n; i++) {
|
||||
nums[i] = i + 1;
|
||||
|
@ -1,11 +1,11 @@
|
||||
/**
|
||||
* File: avl_tree.cpp
|
||||
* File: avl_tree.js
|
||||
* Created Time: 2023-02-05
|
||||
* Author: what-is-me (whatisme@outlook.jp)
|
||||
*/
|
||||
|
||||
let { TreeNode } = require("../include/TreeNode");
|
||||
let { printTree } = require("../include/PrintUtil");
|
||||
const { TreeNode } = require("../include/TreeNode");
|
||||
const { printTree } = require("../include/PrintUtil");
|
||||
|
||||
/* AVL 树*/
|
||||
class AVLTree {
|
||||
@ -36,8 +36,8 @@ class AVLTree {
|
||||
|
||||
/* 右旋操作 */
|
||||
rightRotate(node) {
|
||||
let child = node.left;
|
||||
let grandChild = child.right;
|
||||
const child = node.left;
|
||||
const grandChild = child.right;
|
||||
// 以 child 为原点,将 node 向右旋转
|
||||
child.right = node;
|
||||
node.left = grandChild;
|
||||
@ -50,8 +50,8 @@ class AVLTree {
|
||||
|
||||
/* 左旋操作 */
|
||||
leftRotate(node) {
|
||||
let child = node.right;
|
||||
let grandChild = child.left;
|
||||
const child = node.right;
|
||||
const grandChild = child.left;
|
||||
// 以 child 为原点,将 node 向左旋转
|
||||
child.left = node;
|
||||
node.right = grandChild;
|
||||
@ -65,7 +65,7 @@ class AVLTree {
|
||||
/* 执行旋转操作,使该子树重新恢复平衡 */
|
||||
rotate(node) {
|
||||
// 获取结点 node 的平衡因子
|
||||
let balanceFactor = this.balanceFactor(node);
|
||||
const balanceFactor = this.balanceFactor(node);
|
||||
// 左偏树
|
||||
if (balanceFactor > 1) {
|
||||
if (this.balanceFactor(node.left) >= 0) {
|
||||
@ -126,14 +126,14 @@ class AVLTree {
|
||||
else if (val > node.val) node.right = this.removeHelper(node.right, val);
|
||||
else {
|
||||
if (node.left === null || node.right === null) {
|
||||
let child = node.left !== null ? node.left : node.right;
|
||||
const child = node.left !== null ? node.left : node.right;
|
||||
// 子结点数量 = 0 ,直接删除 node 并返回
|
||||
if (child === null) return null;
|
||||
// 子结点数量 = 1 ,直接删除 node
|
||||
else node = child;
|
||||
} else {
|
||||
// 子结点数量 = 2 ,则将中序遍历的下个结点删除,并用该结点替换当前结点
|
||||
let temp = this.getInOrderNext(node.right);
|
||||
const temp = this.getInOrderNext(node.right);
|
||||
node.right = this.removeHelper(node.right, temp.val);
|
||||
node.val = temp.val;
|
||||
}
|
||||
@ -184,8 +184,9 @@ function testRemove(tree, val) {
|
||||
printTree(tree.root);
|
||||
}
|
||||
|
||||
/* Driver Code */
|
||||
/* 初始化空 AVL 树 */
|
||||
let avlTree = new AVLTree();
|
||||
const avlTree = new AVLTree();
|
||||
/* 插入结点 */
|
||||
// 请关注插入结点后,AVL 树是如何保持平衡的
|
||||
testInsert(avlTree, 1);
|
||||
@ -209,5 +210,5 @@ testRemove(avlTree, 5); // 删除度为 1 的结点
|
||||
testRemove(avlTree, 4); // 删除度为 2 的结点
|
||||
|
||||
/* 查询结点 */
|
||||
let node = avlTree.search(7);
|
||||
console.log("\n查找到的结点对象为 " + node + ",结点值 = " + node.val);
|
||||
const node = avlTree.search(7);
|
||||
console.log("\n查找到的结点对象为", node, ",结点值 = " + node.val);
|
||||
|
@ -6,15 +6,15 @@
|
||||
|
||||
/* 生成一个数组,元素为 { 1, 2, ..., n },顺序被打乱 */
|
||||
function randomNumbers(n: number): number[] {
|
||||
let nums = Array(n);
|
||||
const nums = Array(n);
|
||||
// 生成数组 nums = { 1, 2, 3, ..., n }
|
||||
for (let i = 0; i < n; i++) {
|
||||
nums[i] = i + 1;
|
||||
}
|
||||
// 随机打乱数组元素
|
||||
for (let i = 0; i < n; i++) {
|
||||
let r = Math.floor(Math.random() * (i + 1));
|
||||
let temp = nums[i];
|
||||
const r = Math.floor(Math.random() * (i + 1));
|
||||
const temp = nums[i];
|
||||
nums[i] = nums[r];
|
||||
nums[r] = temp;
|
||||
}
|
||||
@ -35,9 +35,9 @@ function findOne(nums: number[]): number {
|
||||
|
||||
/* Driver Code */
|
||||
for (let i = 0; i < 10; i++) {
|
||||
let n = 100;
|
||||
let nums = randomNumbers(n);
|
||||
let index = findOne(nums);
|
||||
const n = 100;
|
||||
const nums = randomNumbers(n);
|
||||
const index = findOne(nums);
|
||||
console.log(
|
||||
"\n数组 [ 1, 2, ..., n ] 被打乱后 = [" + nums.join(", ") + "]"
|
||||
);
|
||||
|
@ -37,7 +37,7 @@ function linearSearchLinkedList(head: ListNode | null, target: number): ListNode
|
||||
const target = 3;
|
||||
|
||||
/* 在数组中执行线性查找 */
|
||||
const nums = [ 1, 5, 3, 2, 4, 7, 5, 9, 10, 8 ];
|
||||
const nums = [1, 5, 3, 2, 4, 7, 5, 9, 10, 8];
|
||||
const index = linearSearchArray(nums, target);
|
||||
console.log('目标元素 3 的索引 =', index);
|
||||
|
||||
|
228
codes/typescript/chapter_tree/avl_tree.ts
Normal file
228
codes/typescript/chapter_tree/avl_tree.ts
Normal file
@ -0,0 +1,228 @@
|
||||
/**
|
||||
* File: avl_tree.ts
|
||||
* Created Time: 2023-02-06
|
||||
* Author: Justin (xiefahit@gmail.com)
|
||||
*/
|
||||
|
||||
import { TreeNode } from "../module/TreeNode";
|
||||
import { printTree } from "../module/PrintUtil";
|
||||
|
||||
/* AVL 树*/
|
||||
class AVLTree {
|
||||
root: TreeNode;
|
||||
/*构造函数*/
|
||||
constructor() {
|
||||
this.root = null; //根节点
|
||||
}
|
||||
|
||||
/* 获取结点高度 */
|
||||
height(node: TreeNode): number {
|
||||
// 空结点高度为 -1 ,叶结点高度为 0
|
||||
return node === null ? -1 : node.height;
|
||||
}
|
||||
|
||||
/* 更新结点高度 */
|
||||
updateHeight(node: TreeNode): void {
|
||||
// 结点高度等于最高子树高度 + 1
|
||||
node.height = Math.max(this.height(node.left), this.height(node.right)) + 1;
|
||||
}
|
||||
|
||||
/* 获取平衡因子 */
|
||||
balanceFactor(node: TreeNode): number {
|
||||
// 空结点平衡因子为 0
|
||||
if (node === null) return 0;
|
||||
// 结点平衡因子 = 左子树高度 - 右子树高度
|
||||
return this.height(node.left) - this.height(node.right);
|
||||
}
|
||||
|
||||
/* 右旋操作 */
|
||||
rightRotate(node: TreeNode): TreeNode {
|
||||
const child = node.left;
|
||||
const grandChild = child.right;
|
||||
// 以 child 为原点,将 node 向右旋转
|
||||
child.right = node;
|
||||
node.left = grandChild;
|
||||
// 更新结点高度
|
||||
this.updateHeight(node);
|
||||
this.updateHeight(child);
|
||||
// 返回旋转后子树的根节点
|
||||
return child;
|
||||
}
|
||||
|
||||
/* 左旋操作 */
|
||||
leftRotate(node: TreeNode): TreeNode {
|
||||
const child = node.right;
|
||||
const grandChild = child.left;
|
||||
// 以 child 为原点,将 node 向左旋转
|
||||
child.left = node;
|
||||
node.right = grandChild;
|
||||
// 更新结点高度
|
||||
this.updateHeight(node);
|
||||
this.updateHeight(child);
|
||||
// 返回旋转后子树的根节点
|
||||
return child;
|
||||
}
|
||||
|
||||
/* 执行旋转操作,使该子树重新恢复平衡 */
|
||||
rotate(node: TreeNode): TreeNode {
|
||||
// 获取结点 node 的平衡因子
|
||||
const balanceFactor = this.balanceFactor(node);
|
||||
// 左偏树
|
||||
if (balanceFactor > 1) {
|
||||
if (this.balanceFactor(node.left) >= 0) {
|
||||
// 右旋
|
||||
return this.rightRotate(node);
|
||||
} else {
|
||||
// 先左旋后右旋
|
||||
node.left = this.leftRotate(node.left);
|
||||
return this.rightRotate(node);
|
||||
}
|
||||
}
|
||||
// 右偏树
|
||||
if (balanceFactor < -1) {
|
||||
if (this.balanceFactor(node.right) <= 0) {
|
||||
// 左旋
|
||||
return this.leftRotate(node);
|
||||
} else {
|
||||
// 先右旋后左旋
|
||||
node.right = this.rightRotate(node.right);
|
||||
return this.leftRotate(node);
|
||||
}
|
||||
}
|
||||
// 平衡树,无需旋转,直接返回
|
||||
return node;
|
||||
}
|
||||
|
||||
/* 插入结点 */
|
||||
insert(val: number): TreeNode {
|
||||
this.root = this.insertHelper(this.root, val);
|
||||
return this.root;
|
||||
}
|
||||
|
||||
/* 递归插入结点(辅助函数) */
|
||||
insertHelper(node: TreeNode, val: number): TreeNode {
|
||||
if (node === null) return new TreeNode(val);
|
||||
/* 1. 查找插入位置,并插入结点 */
|
||||
if (val < node.val) {
|
||||
node.left = this.insertHelper(node.left, val);
|
||||
} else if (val > node.val) {
|
||||
node.right = this.insertHelper(node.right, val);
|
||||
} else {
|
||||
return node; // 重复结点不插入,直接返回
|
||||
}
|
||||
this.updateHeight(node); // 更新结点高度
|
||||
/* 2. 执行旋转操作,使该子树重新恢复平衡 */
|
||||
node = this.rotate(node);
|
||||
// 返回子树的根节点
|
||||
return node;
|
||||
}
|
||||
|
||||
/* 删除结点 */
|
||||
remove(val: number): TreeNode {
|
||||
this.root = this.removeHelper(this.root, val);
|
||||
return this.root;
|
||||
}
|
||||
|
||||
/* 递归删除结点(辅助函数) */
|
||||
removeHelper(node: TreeNode, val: number): TreeNode {
|
||||
if (node === null) return null;
|
||||
/* 1. 查找结点,并删除之 */
|
||||
if (val < node.val) {
|
||||
node.left = this.removeHelper(node.left, val);
|
||||
} else if (val > node.val) {
|
||||
node.right = this.removeHelper(node.right, val);
|
||||
} else {
|
||||
if (node.left === null || node.right === null) {
|
||||
const child = node.left !== null ? node.left : node.right;
|
||||
// 子结点数量 = 0 ,直接删除 node 并返回
|
||||
if (child === null) {
|
||||
return null;
|
||||
} else {
|
||||
// 子结点数量 = 1 ,直接删除 node
|
||||
node = child;
|
||||
}
|
||||
} else {
|
||||
// 子结点数量 = 2 ,则将中序遍历的下个结点删除,并用该结点替换当前结点
|
||||
const temp = this.getInOrderNext(node.right);
|
||||
node.right = this.removeHelper(node.right, temp.val);
|
||||
node.val = temp.val;
|
||||
}
|
||||
}
|
||||
this.updateHeight(node); // 更新结点高度
|
||||
/* 2. 执行旋转操作,使该子树重新恢复平衡 */
|
||||
node = this.rotate(node);
|
||||
// 返回子树的根节点
|
||||
return node;
|
||||
}
|
||||
|
||||
/* 获取中序遍历中的下一个结点(仅适用于 root 有左子结点的情况) */
|
||||
getInOrderNext(node: TreeNode): TreeNode {
|
||||
if (node === null) return node;
|
||||
// 循环访问左子结点,直到叶结点时为最小结点,跳出
|
||||
while (node.left !== null) {
|
||||
node = node.left;
|
||||
}
|
||||
return node;
|
||||
}
|
||||
|
||||
/* 查找结点 */
|
||||
search(val: number): TreeNode {
|
||||
let cur = this.root;
|
||||
// 循环查找,越过叶结点后跳出
|
||||
while (cur !== null) {
|
||||
if (cur.val < val) {
|
||||
// 目标结点在 cur 的右子树中
|
||||
cur = cur.right;
|
||||
} else if (cur.val > val) {
|
||||
// 目标结点在 cur 的左子树中
|
||||
cur = cur.left;
|
||||
} else {
|
||||
// 找到目标结点,跳出循环
|
||||
break;
|
||||
}
|
||||
}
|
||||
// 返回目标结点
|
||||
return cur;
|
||||
}
|
||||
}
|
||||
|
||||
function testInsert(tree: AVLTree, val: number): void {
|
||||
tree.insert(val);
|
||||
console.log("\n插入结点 " + val + " 后,AVL 树为");
|
||||
printTree(tree.root);
|
||||
}
|
||||
|
||||
function testRemove(tree: AVLTree, val: number): void {
|
||||
tree.remove(val);
|
||||
console.log("\n删除结点 " + val + " 后,AVL 树为");
|
||||
printTree(tree.root);
|
||||
}
|
||||
|
||||
/* Driver Code */
|
||||
/* 初始化空 AVL 树 */
|
||||
const avlTree = new AVLTree();
|
||||
/* 插入结点 */
|
||||
// 请关注插入结点后,AVL 树是如何保持平衡的
|
||||
testInsert(avlTree, 1);
|
||||
testInsert(avlTree, 2);
|
||||
testInsert(avlTree, 3);
|
||||
testInsert(avlTree, 4);
|
||||
testInsert(avlTree, 5);
|
||||
testInsert(avlTree, 8);
|
||||
testInsert(avlTree, 7);
|
||||
testInsert(avlTree, 9);
|
||||
testInsert(avlTree, 10);
|
||||
testInsert(avlTree, 6);
|
||||
|
||||
/* 插入重复结点 */
|
||||
testInsert(avlTree, 7);
|
||||
|
||||
/* 删除结点 */
|
||||
// 请关注删除结点后,AVL 树是如何保持平衡的
|
||||
testRemove(avlTree, 8); // 删除度为 0 的结点
|
||||
testRemove(avlTree, 5); // 删除度为 1 的结点
|
||||
testRemove(avlTree, 4); // 删除度为 2 的结点
|
||||
|
||||
/* 查询结点 */
|
||||
const node = avlTree.search(7);
|
||||
console.log("\n查找到的结点对象为", node, ",结点值 = " + node.val);
|
@ -31,4 +31,21 @@ function arrToLinkedList(arr: number[]): ListNode | null {
|
||||
return dum.next;
|
||||
}
|
||||
|
||||
export { ListNode, arrToLinkedList };
|
||||
/**
|
||||
* Get a list node with specific value from a linked list
|
||||
* @param head
|
||||
* @param val
|
||||
* @return
|
||||
*/
|
||||
function getListNode(head: ListNode | null, val: number): ListNode | null {
|
||||
while (head !== null && head.val !== val) {
|
||||
head = head.next;
|
||||
}
|
||||
return head;
|
||||
}
|
||||
|
||||
export {
|
||||
ListNode,
|
||||
arrToLinkedList,
|
||||
getListNode
|
||||
};
|
||||
|
@ -8,14 +8,15 @@
|
||||
* Definition for a binary tree node.
|
||||
*/
|
||||
class TreeNode {
|
||||
val: number;
|
||||
left: TreeNode | null;
|
||||
right: TreeNode | null;
|
||||
|
||||
constructor(val?: number, left?: TreeNode | null, right?: TreeNode | null) {
|
||||
this.val = val === undefined ? 0 : val; // 结点值
|
||||
this.left = left === undefined ? null : left; // 左子结点指针
|
||||
this.right = right === undefined ? null : right; // 右子结点指针
|
||||
val: number; // 结点值
|
||||
height: number; // 结点高度
|
||||
left: TreeNode | null; // 左子结点指针
|
||||
right: TreeNode | null; // 右子结点指针
|
||||
constructor(val?: number, height?: number, left?: TreeNode | null, right?: TreeNode | null) {
|
||||
this.val = val === undefined ? 0 : val;
|
||||
this.height = height === undefined ? 0 : height;
|
||||
this.left = left === undefined ? null : left;
|
||||
this.right = right === undefined ? null : right;
|
||||
}
|
||||
}
|
||||
|
||||
@ -33,7 +34,7 @@ function arrToTree(arr: (number | null)[]): TreeNode | null {
|
||||
const queue = [root];
|
||||
let i = 0;
|
||||
while (queue.length) {
|
||||
let node = queue.shift() as TreeNode;
|
||||
const node = queue.shift() as TreeNode;
|
||||
if (++i >= arr.length) break;
|
||||
if (arr[i] !== null) {
|
||||
node.left = new TreeNode(arr[i] as number);
|
||||
|
@ -2555,7 +2555,7 @@ $$
|
||||
```js title="worst_best_time_complexity.js"
|
||||
/* 生成一个数组,元素为 { 1, 2, ..., n },顺序被打乱 */
|
||||
function randomNumbers(n) {
|
||||
let nums = Array(n);
|
||||
const nums = Array(n);
|
||||
// 生成数组 nums = { 1, 2, 3, ..., n }
|
||||
for (let i = 0; i < n; i++) {
|
||||
nums[i] = i + 1;
|
||||
@ -2588,15 +2588,15 @@ $$
|
||||
```typescript title="worst_best_time_complexity.ts"
|
||||
/* 生成一个数组,元素为 { 1, 2, ..., n },顺序被打乱 */
|
||||
function randomNumbers(n: number): number[] {
|
||||
let nums = Array(n);
|
||||
const nums = Array(n);
|
||||
// 生成数组 nums = { 1, 2, 3, ..., n }
|
||||
for (let i = 0; i < n; i++) {
|
||||
nums[i] = i + 1;
|
||||
}
|
||||
// 随机打乱数组元素
|
||||
for (let i = 0; i < n; i++) {
|
||||
let r = Math.floor(Math.random() * (i + 1));
|
||||
let temp = nums[i];
|
||||
const r = Math.floor(Math.random() * (i + 1));
|
||||
const temp = nums[i];
|
||||
nums[i] = nums[r];
|
||||
nums[r] = temp;
|
||||
}
|
||||
|
@ -82,14 +82,14 @@ G. M. Adelson-Velsky 和 E. M. Landis 在其 1962 年发表的论文 "An algorit
|
||||
```js title="avl_tree.js"
|
||||
class TreeNode {
|
||||
val; // 结点值
|
||||
height; //结点高度
|
||||
left; // 左子结点指针
|
||||
right; // 右子结点指针
|
||||
height; //结点高度
|
||||
constructor(val, left, right, height) {
|
||||
this.val = val === undefined ? 0 : val;
|
||||
this.height = height === undefined ? 0 : height;
|
||||
this.left = left === undefined ? null : left;
|
||||
this.right = right === undefined ? null : right;
|
||||
this.height = height === undefined ? 0 : height;
|
||||
}
|
||||
}
|
||||
```
|
||||
@ -97,7 +97,18 @@ G. M. Adelson-Velsky 和 E. M. Landis 在其 1962 年发表的论文 "An algorit
|
||||
=== "TypeScript"
|
||||
|
||||
```typescript title="avl_tree.ts"
|
||||
|
||||
class TreeNode {
|
||||
val: number; // 结点值
|
||||
height: number; // 结点高度
|
||||
left: TreeNode | null; // 左子结点指针
|
||||
right: TreeNode | null; // 右子结点指针
|
||||
constructor(val?: number, height?: number, left?: TreeNode | null, right?: TreeNode | null) {
|
||||
this.val = val === undefined ? 0 : val;
|
||||
this.height = height === undefined ? 0 : height;
|
||||
this.left = left === undefined ? null : left;
|
||||
this.right = right === undefined ? null : right;
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
=== "C"
|
||||
@ -228,7 +239,17 @@ G. M. Adelson-Velsky 和 E. M. Landis 在其 1962 年发表的论文 "An algorit
|
||||
=== "TypeScript"
|
||||
|
||||
```typescript title="avl_tree.ts"
|
||||
/* 获取结点高度 */
|
||||
height(node: TreeNode): number {
|
||||
// 空结点高度为 -1 ,叶结点高度为 0
|
||||
return node === null ? -1 : node.height;
|
||||
}
|
||||
|
||||
/* 更新结点高度 */
|
||||
updateHeight(node: TreeNode): void {
|
||||
// 结点高度等于最高子树高度 + 1
|
||||
node.height = Math.max(this.height(node.left), this.height(node.right)) + 1;
|
||||
}
|
||||
```
|
||||
|
||||
=== "C"
|
||||
@ -340,7 +361,13 @@ G. M. Adelson-Velsky 和 E. M. Landis 在其 1962 年发表的论文 "An algorit
|
||||
=== "TypeScript"
|
||||
|
||||
```typescript title="avl_tree.ts"
|
||||
|
||||
/* 获取平衡因子 */
|
||||
balanceFactor(node: TreeNode): number {
|
||||
// 空结点平衡因子为 0
|
||||
if (node === null) return 0;
|
||||
// 结点平衡因子 = 左子树高度 - 右子树高度
|
||||
return this.height(node.left) - this.height(node.right);
|
||||
}
|
||||
```
|
||||
|
||||
=== "C"
|
||||
@ -479,8 +506,8 @@ AVL 树的独特之处在于「旋转 Rotation」的操作,其可 **在不影
|
||||
```js title="avl_tree.js"
|
||||
/* 右旋操作 */
|
||||
rightRotate(node) {
|
||||
let child = node.left;
|
||||
let grandChild = child.right;
|
||||
const child = node.left;
|
||||
const grandChild = child.right;
|
||||
// 以 child 为原点,将 node 向右旋转
|
||||
child.right = node;
|
||||
node.left = grandChild;
|
||||
@ -495,7 +522,19 @@ AVL 树的独特之处在于「旋转 Rotation」的操作,其可 **在不影
|
||||
=== "TypeScript"
|
||||
|
||||
```typescript title="avl_tree.ts"
|
||||
|
||||
/* 右旋操作 */
|
||||
rightRotate(node: TreeNode): TreeNode {
|
||||
const child = node.left;
|
||||
const grandChild = child.right;
|
||||
// 以 child 为原点,将 node 向右旋转
|
||||
child.right = node;
|
||||
node.left = grandChild;
|
||||
// 更新结点高度
|
||||
this.updateHeight(node);
|
||||
this.updateHeight(child);
|
||||
// 返回旋转后子树的根节点
|
||||
return child;
|
||||
}
|
||||
```
|
||||
|
||||
=== "C"
|
||||
@ -624,8 +663,8 @@ AVL 树的独特之处在于「旋转 Rotation」的操作,其可 **在不影
|
||||
```js title="avl_tree.js"
|
||||
/* 左旋操作 */
|
||||
leftRotate(node) {
|
||||
let child = node.right;
|
||||
let grandChild = child.left;
|
||||
const child = node.right;
|
||||
const grandChild = child.left;
|
||||
// 以 child 为原点,将 node 向左旋转
|
||||
child.left = node;
|
||||
node.right = grandChild;
|
||||
@ -640,7 +679,19 @@ AVL 树的独特之处在于「旋转 Rotation」的操作,其可 **在不影
|
||||
=== "TypeScript"
|
||||
|
||||
```typescript title="avl_tree.ts"
|
||||
|
||||
/* 左旋操作 */
|
||||
leftRotate(node: TreeNode): TreeNode {
|
||||
const child = node.right;
|
||||
const grandChild = child.left;
|
||||
// 以 child 为原点,将 node 向左旋转
|
||||
child.left = node;
|
||||
node.right = grandChild;
|
||||
// 更新结点高度
|
||||
this.updateHeight(node);
|
||||
this.updateHeight(child);
|
||||
// 返回旋转后子树的根节点
|
||||
return child;
|
||||
}
|
||||
```
|
||||
|
||||
=== "C"
|
||||
@ -843,7 +894,7 @@ AVL 树的独特之处在于「旋转 Rotation」的操作,其可 **在不影
|
||||
/* 执行旋转操作,使该子树重新恢复平衡 */
|
||||
rotate(node) {
|
||||
// 获取结点 node 的平衡因子
|
||||
let balanceFactor = this.balanceFactor(node);
|
||||
const balanceFactor = this.balanceFactor(node);
|
||||
// 左偏树
|
||||
if (balanceFactor > 1) {
|
||||
if (this.balanceFactor(node.left) >= 0) {
|
||||
@ -874,7 +925,35 @@ AVL 树的独特之处在于「旋转 Rotation」的操作,其可 **在不影
|
||||
=== "TypeScript"
|
||||
|
||||
```typescript title="avl_tree.ts"
|
||||
|
||||
/* 执行旋转操作,使该子树重新恢复平衡 */
|
||||
rotate(node: TreeNode): TreeNode {
|
||||
// 获取结点 node 的平衡因子
|
||||
const balanceFactor = this.balanceFactor(node);
|
||||
// 左偏树
|
||||
if (balanceFactor > 1) {
|
||||
if (this.balanceFactor(node.left) >= 0) {
|
||||
// 右旋
|
||||
return this.rightRotate(node);
|
||||
} else {
|
||||
// 先左旋后右旋
|
||||
node.left = this.leftRotate(node.left);
|
||||
return this.rightRotate(node);
|
||||
}
|
||||
}
|
||||
// 右偏树
|
||||
if (balanceFactor < -1) {
|
||||
if (this.balanceFactor(node.right) <= 0) {
|
||||
// 左旋
|
||||
return this.leftRotate(node);
|
||||
} else {
|
||||
// 先右旋后左旋
|
||||
node.right = this.rightRotate(node.right);
|
||||
return this.leftRotate(node);
|
||||
}
|
||||
}
|
||||
// 平衡树,无需旋转,直接返回
|
||||
return node;
|
||||
}
|
||||
```
|
||||
|
||||
=== "C"
|
||||
@ -1092,7 +1171,29 @@ AVL 树的独特之处在于「旋转 Rotation」的操作,其可 **在不影
|
||||
=== "TypeScript"
|
||||
|
||||
```typescript title="avl_tree.ts"
|
||||
/* 插入结点 */
|
||||
insert(val: number): TreeNode {
|
||||
this.root = this.insertHelper(this.root, val);
|
||||
return this.root;
|
||||
}
|
||||
|
||||
/* 递归插入结点(辅助函数) */
|
||||
insertHelper(node: TreeNode, val: number): TreeNode {
|
||||
if (node === null) return new TreeNode(val);
|
||||
/* 1. 查找插入位置,并插入结点 */
|
||||
if (val < node.val) {
|
||||
node.left = this.insertHelper(node.left, val);
|
||||
} else if (val > node.val) {
|
||||
node.right = this.insertHelper(node.right, val);
|
||||
} else {
|
||||
return node; // 重复结点不插入,直接返回
|
||||
}
|
||||
this.updateHeight(node); // 更新结点高度
|
||||
/* 2. 执行旋转操作,使该子树重新恢复平衡 */
|
||||
node = this.rotate(node);
|
||||
// 返回子树的根节点
|
||||
return node;
|
||||
}
|
||||
```
|
||||
|
||||
=== "C"
|
||||
@ -1333,14 +1434,14 @@ AVL 树的独特之处在于「旋转 Rotation」的操作,其可 **在不影
|
||||
else if (val > node.val) node.right = this.removeHelper(node.right, val);
|
||||
else {
|
||||
if (node.left === null || node.right === null) {
|
||||
let child = node.left !== null ? node.left : node.right;
|
||||
const child = node.left !== null ? node.left : node.right;
|
||||
// 子结点数量 = 0 ,直接删除 node 并返回
|
||||
if (child === null) return null;
|
||||
// 子结点数量 = 1 ,直接删除 node
|
||||
else node = child;
|
||||
} else {
|
||||
// 子结点数量 = 2 ,则将中序遍历的下个结点删除,并用该结点替换当前结点
|
||||
let temp = this.getInOrderNext(node.right);
|
||||
const temp = this.getInOrderNext(node.right);
|
||||
node.right = this.removeHelper(node.right, temp.val);
|
||||
node.val = temp.val;
|
||||
}
|
||||
@ -1351,12 +1452,68 @@ AVL 树的独特之处在于「旋转 Rotation」的操作,其可 **在不影
|
||||
// 返回子树的根节点
|
||||
return node;
|
||||
}
|
||||
|
||||
/* 获取中序遍历中的下一个结点(仅适用于 root 有左子结点的情况) */
|
||||
getInOrderNext(node) {
|
||||
if (node === null) return node;
|
||||
// 循环访问左子结点,直到叶结点时为最小结点,跳出
|
||||
while (node.left !== null) {
|
||||
node = node.left;
|
||||
}
|
||||
return node;
|
||||
}
|
||||
```
|
||||
|
||||
=== "TypeScript"
|
||||
|
||||
```typescript title="avl_tree.ts"
|
||||
/* 删除结点 */
|
||||
remove(val: number): TreeNode {
|
||||
this.root = this.removeHelper(this.root, val);
|
||||
return this.root;
|
||||
}
|
||||
|
||||
/* 递归删除结点(辅助函数) */
|
||||
removeHelper(node: TreeNode, val: number): TreeNode {
|
||||
if (node === null) return null;
|
||||
/* 1. 查找结点,并删除之 */
|
||||
if (val < node.val) {
|
||||
node.left = this.removeHelper(node.left, val);
|
||||
} else if (val > node.val) {
|
||||
node.right = this.removeHelper(node.right, val);
|
||||
} else {
|
||||
if (node.left === null || node.right === null) {
|
||||
const child = node.left !== null ? node.left : node.right;
|
||||
// 子结点数量 = 0 ,直接删除 node 并返回
|
||||
if (child === null) {
|
||||
return null;
|
||||
} else {
|
||||
// 子结点数量 = 1 ,直接删除 node
|
||||
node = child;
|
||||
}
|
||||
} else {
|
||||
// 子结点数量 = 2 ,则将中序遍历的下个结点删除,并用该结点替换当前结点
|
||||
const temp = this.getInOrderNext(node.right);
|
||||
node.right = this.removeHelper(node.right, temp.val);
|
||||
node.val = temp.val;
|
||||
}
|
||||
}
|
||||
this.updateHeight(node); // 更新结点高度
|
||||
/* 2. 执行旋转操作,使该子树重新恢复平衡 */
|
||||
node = this.rotate(node);
|
||||
// 返回子树的根节点
|
||||
return node;
|
||||
}
|
||||
|
||||
/* 获取中序遍历中的下一个结点(仅适用于 root 有左子结点的情况) */
|
||||
getInOrderNext(node: TreeNode): TreeNode {
|
||||
if (node === null) return node;
|
||||
// 循环访问左子结点,直到叶结点时为最小结点,跳出
|
||||
while (node.left !== null) {
|
||||
node = node.left;
|
||||
}
|
||||
return node;
|
||||
}
|
||||
```
|
||||
|
||||
=== "C"
|
||||
|
Loading…
Reference in New Issue
Block a user