diff --git a/.gitignore b/.gitignore
index 70b2f49fe..38a9c009c 100644
--- a/.gitignore
+++ b/.gitignore
@@ -13,3 +13,5 @@ docs/overrides/
# python files
__pycache__
+/.vs
+/codes/csharp/.cr/personal/FavoritesList
diff --git a/codes/csharp/chapter_computational_complexity/time_complexity.cs b/codes/csharp/chapter_computational_complexity/time_complexity.cs
new file mode 100644
index 000000000..867d9c382
--- /dev/null
+++ b/codes/csharp/chapter_computational_complexity/time_complexity.cs
@@ -0,0 +1,277 @@
+// File: LinkedList.cs
+// Created Time: 2022-12-19
+// Author: SayoKun (373484252@qq.com)
+
+using System;
+using System.Linq;
+
+namespace hello_algo.chapter_computational_complexity
+{
+ public class time_complexity
+ {
+ ///
+ /// 常数阶
+ ///
+ ///
+ ///
+ int constant(int n)
+ {
+ int count = 0;
+ int size = 100000;
+ for (int i = 0; i < size; i++)
+ count++;
+ return count;
+ }
+
+ ///
+ /// 线性阶
+ ///
+ ///
+ ///
+ int linear(int n)
+ {
+ int count = 0;
+ for (int i = 0; i < n; i++)
+ count++;
+ return count;
+ }
+
+ ///
+ /// 线性阶(遍历数组)
+ ///
+ ///
+ ///
+ int arrayTraversal(int[] nums)
+ {
+ int count = 0;
+ // 循环次数与数组长度成正比
+ foreach (int num in nums)
+ {
+ count++;
+ }
+ return count;
+ }
+
+ ///
+ /// 平方阶
+ ///
+ ///
+ ///
+ int quadratic(int n)
+ {
+ int count = 0;
+ // 循环次数与数组长度成平方关系
+ for (int i = 0; i < n; i++)
+ {
+ for (int j = 0; j < n; j++)
+ {
+ count++;
+ }
+ }
+ return count;
+ }
+
+ ///
+ /// 平方阶(冒泡排序)
+ ///
+ ///
+ ///
+ int bubbleSort(int[] nums)
+ {
+ int count = 0; // 计数器
+ // 外循环:待排序元素数量为 n-1, n-2, ..., 1
+ for (int i = nums.Length - 1; i > 0; i--)
+ {
+ // 内循环:冒泡操作
+ for (int j = 0; j < i; j++)
+ {
+ if (nums[j] > nums[j + 1])
+ {
+ // 交换 nums[j] 与 nums[j + 1]
+ int tmp = nums[j];
+ nums[j] = nums[j + 1];
+ nums[j + 1] = tmp;
+ count += 3; // 元素交换包含 3 个单元操作
+ }
+ }
+ }
+ return count;
+ }
+
+ ///
+ /// 指数阶(循环实现)
+ ///
+ ///
+ ///
+ int exponential(int n)
+ {
+ int count = 0, baseNum = 1;
+ // cell 每轮一分为二,形成数列 1, 2, 4, 8, ..., 2^(n-1)
+ for (int i = 0; i < n; i++)
+ {
+ for (int j = 0; j < baseNum; j++)
+ {
+ count++;
+ }
+ baseNum *= 2;
+ }
+ // count = 1 + 2 + 4 + 8 + .. + 2^(n-1) = 2^n - 1
+ return count;
+ }
+
+ ///
+ /// 指数阶(递归实现)
+ ///
+ ///
+ ///
+ int expRecur(int n)
+ {
+ if (n == 1) return 1;
+ return expRecur(n - 1) + expRecur(n - 1) + 1;
+ }
+
+ ///
+ /// 对数阶(循环实现)
+ ///
+ ///
+ ///
+ int logarithmic(float n)
+ {
+ int count = 0;
+ while (n > 1)
+ {
+ n = n / 2;
+ count++;
+ }
+ return count;
+ }
+
+ ///
+ /// 对数阶(递归实现)
+ ///
+ ///
+ ///
+ int logRecur(float n)
+ {
+ if (n <= 1) return 0;
+ return logRecur(n / 2) + 1;
+ }
+
+ ///
+ /// 线性对数阶
+ ///
+ ///
+ ///
+ int linearLogRecur(float n)
+ {
+ if (n <= 1) return 1;
+ int count = linearLogRecur(n / 2) +
+ linearLogRecur(n / 2);
+ for (int i = 0; i < n; i++)
+ {
+ count++;
+ }
+ return count;
+ }
+
+ ///
+ /// 阶乘阶(递归实现)
+ ///
+ /// 递归数
+ ///
+ int factorialRecur(int n)
+ {
+ if (n == 0) return 1;
+ int count = 0;
+ // 从 1 个分裂出 n 个
+ for (int i = 0; i < n; i++)
+ {
+ count += factorialRecur(n - 1);
+ }
+ return count;
+ }
+
+ ///
+ /// 生成一个数组,元素为 { 1, 2, ..., n },顺序被打乱
+ ///
+ /// 数组大小
+ ///
+ int[] randomNumbers(int n)
+ {
+ int[] nums = new int[n];
+ // 生成数组 nums = { 1, 2, 3, ..., n }
+ for (int i = 0; i < n; i++)
+ {
+ nums[i] = i + 1;
+ }
+ // 随机打乱数组元素
+ nums = nums.OrderBy(num => System.Random.Shared.Next()).ToArray();
+ return nums;
+ }
+
+ ///
+ /// 查找数组 nums 中数字 1 所在索引
+ ///
+ /// 索引数组
+ ///
+ int findOne(in Span nums) => nums.IndexOf(1);
+
+ void worstBestTimeComplexity()
+ {
+ for (int i = 0; i < 10; i++)
+ {
+ int n = 100;
+ int[] nums = randomNumbers(n);
+ int index = findOne(nums);
+ System.Console.WriteLine($"打乱后的数组为 [{string.Join(",", nums)}]");
+ System.Console.WriteLine($"数字 1 的索引为 [{index}]");
+ }
+ }
+
+ ///
+ /// Driver Code
+ ///
+ public void main()
+ {
+ // 可以修改 n 运行,体会一下各种复杂度的操作数量变化趋势
+ int n = 8;
+ System.Console.WriteLine("输入数据大小 n = " + n);
+
+ int count = constant(n);
+ System.Console.WriteLine("常数阶的计算操作数量 = " + count);
+
+ count = linear(n);
+ System.Console.WriteLine("线性阶的计算操作数量 = " + count);
+
+ count = arrayTraversal(new int[n]);
+ System.Console.WriteLine("线性阶(遍历数组)的计算操作数量 = " + count);
+
+ count = quadratic(n);
+ System.Console.WriteLine("平方阶的计算操作数量 = " + count);
+
+ int[] nums = new int[n];
+ for (int i = 0; i < n; i++)
+ nums[i] = n - i; // [n,n-1,...,2,1]
+ count = bubbleSort(nums);
+ System.Console.WriteLine("平方阶(冒泡排序)的计算操作数量 = " + count);
+
+ count = exponential(n);
+ System.Console.WriteLine("指数阶(循环实现)的计算操作数量 = " + count);
+
+ count = expRecur(n);
+ System.Console.WriteLine("指数阶(递归实现)的计算操作数量 = " + count);
+
+ count = logarithmic((float)n);
+ System.Console.WriteLine("对数阶(循环实现)的计算操作数量 = " + count);
+
+ count = logRecur((float)n);
+ System.Console.WriteLine("对数阶(递归实现)的计算操作数量 = " + count);
+
+ count = linearLogRecur((float)n);
+ System.Console.WriteLine("线性对数阶(递归实现)的计算操作数量 = " + count);
+
+ count = factorialRecur(n);
+ System.Console.WriteLine("阶乘阶(递归实现)的计算操作数量 = " + count);
+ }
+ }
+}
diff --git a/docs/chapter_computational_complexity/time_complexity.md b/docs/chapter_computational_complexity/time_complexity.md
index bc8be8913..f139f81a0 100644
--- a/docs/chapter_computational_complexity/time_complexity.md
+++ b/docs/chapter_computational_complexity/time_complexity.md
@@ -97,7 +97,18 @@ $$
=== "C#"
```csharp title=""
-
+ // 在某运行平台下
+ void algorithm(int n)
+ {
+ int a = 2; // 1 ns
+ a = a + 1; // 1 ns
+ a = a * 2; // 10 ns
+ // 循环 n 次
+ for (int i = 0; i < n; i++)
+ { // 1 ns ,每轮都要执行 i++
+ System.Console.WriteLine(0); // 5 ns
+ }
+ }
```
但实际上, **统计算法的运行时间既不合理也不现实。** 首先,我们不希望预估时间和运行平台绑定,毕竟算法需要跑在各式各样的平台之上。其次,我们很难获知每一种操作的运行时间,这为预估过程带来了极大的难度。
@@ -212,7 +223,27 @@ $$
=== "C#"
```csharp title=""
-
+ // 算法 A 时间复杂度:常数阶
+ void algorithm_A(int n)
+ {
+ System.Console.WriteLine(n);
+ }
+ // 算法 B 时间复杂度:线性阶
+ void algorithm_B(int n)
+ {
+ for (int i = 0; i < n; i++)
+ {
+ System.Console.WriteLine(i);
+ }
+ }
+ // 算法 C 时间复杂度:常数阶
+ void algorithm_C(int n)
+ {
+ for (int i = 0; i < 1000000; i++)
+ {
+ System.Console.WriteLine(i);
+ }
+ }
```

@@ -310,7 +341,17 @@ $$
=== "C#"
```csharp title=""
-
+ void algorithm(int n)
+ {
+ int a = 1; // +1
+ a = a + 1; // +1
+ a = a * 2; // +1
+ // 循环 n 次
+ for (int i = 0; i < n; i++)
+ { // +1(每轮都执行 i ++)
+ System.Console.WriteLine(0); // +1
+ }
+ }
```
$T(n)$ 是个一次函数,说明时间增长趋势是线性的,因此易得时间复杂度是线性阶。
@@ -457,7 +498,24 @@ $$
=== "C#"
```csharp title=""
-
+ void algorithm(int n)
+ {
+ int a = 1; // +0(技巧 1)
+ a = a + n; // +0(技巧 1)
+ // +n(技巧 2)
+ for (int i = 0; i < 5 * n + 1; i++)
+ {
+ System.Console.WriteLine(0);
+ }
+ // +n*n(技巧 3)
+ for (int i = 0; i < 2 * n; i++)
+ {
+ for (int j = 0; j < n + 1; j++)
+ {
+ System.Console.WriteLine(0);
+ }
+ }
+ }
```
### 2. 判断渐近上界
@@ -576,7 +634,15 @@ $$
=== "C#"
```csharp title="time_complexity.cs"
-
+ /* 常数阶 */
+ int constant(int n)
+ {
+ int count = 0;
+ int size = 100000;
+ for (int i = 0; i < size; i++)
+ count++;
+ return count;
+ }
```
### 线性阶 $O(n)$
@@ -652,7 +718,14 @@ $$
=== "C#"
```csharp title="time_complexity.cs"
-
+ /* 线性阶 */
+ int linear(int n)
+ {
+ int count = 0;
+ for (int i = 0; i < n; i++)
+ count++;
+ return count;
+ }
```
「遍历数组」和「遍历链表」等操作,时间复杂度都为 $O(n)$ ,其中 $n$ 为数组或链表的长度。
@@ -736,7 +809,17 @@ $$
=== "C#"
```csharp title="time_complexity.cs"
-
+ /* 线性阶(遍历数组) */
+ int arrayTraversal(int[] nums)
+ {
+ int count = 0;
+ // 循环次数与数组长度成正比
+ foreach (int num in nums)
+ {
+ count++;
+ }
+ return count;
+ }
```
### 平方阶 $O(n^2)$
@@ -825,7 +908,20 @@ $$
=== "C#"
```csharp title="time_complexity.cs"
-
+ /* 平方阶 */
+ int quadratic(int n)
+ {
+ int count = 0;
+ // 循环次数与数组长度成平方关系
+ for (int i = 0; i < n; i++)
+ {
+ for (int j = 0; j < n; j++)
+ {
+ count++;
+ }
+ }
+ return count;
+ }
```

@@ -947,7 +1043,28 @@ $$
=== "C#"
```csharp title="time_complexity.cs"
-
+ /* 平方阶(冒泡排序) */
+ int bubbleSort(int[] nums)
+ {
+ int count = 0; // 计数器
+ // 外循环:待排序元素数量为 n-1, n-2, ..., 1
+ for (int i = nums.Length - 1; i > 0; i--)
+ {
+ // 内循环:冒泡操作
+ for (int j = 0; j < i; j++)
+ {
+ if (nums[j] > nums[j + 1])
+ {
+ // 交换 nums[j] 与 nums[j + 1]
+ int tmp = nums[j];
+ nums[j] = nums[j + 1];
+ nums[j + 1] = tmp;
+ count += 3; // 元素交换包含 3 个单元操作
+ }
+ }
+ }
+ return count;
+ }
```
### 指数阶 $O(2^n)$
@@ -1048,7 +1165,22 @@ $$
=== "C#"
```csharp title="time_complexity.cs"
-
+ /* 指数阶(循环实现) */
+ int exponential(int n)
+ {
+ int count = 0, baseNum = 1;
+ // cell 每轮一分为二,形成数列 1, 2, 4, 8, ..., 2^(n-1)
+ for (int i = 0; i < n; i++)
+ {
+ for (int j = 0; j < baseNum; j++)
+ {
+ count++;
+ }
+ baseNum *= 2;
+ }
+ // count = 1 + 2 + 4 + 8 + .. + 2^(n-1) = 2^n - 1
+ return count;
+ }
```

@@ -1119,7 +1251,12 @@ $$
=== "C#"
```csharp title="time_complexity.cs"
-
+ /* 指数阶(递归实现) */
+ int expRecur(int n)
+ {
+ if (n == 1) return 1;
+ return expRecur(n - 1) + expRecur(n - 1) + 1;
+ }
```
### 对数阶 $O(\log n)$
@@ -1205,7 +1342,17 @@ $$
=== "C#"
```csharp title="time_complexity.cs"
-
+ /* 对数阶(循环实现) */
+ int logarithmic(float n)
+ {
+ int count = 0;
+ while (n > 1)
+ {
+ n = n / 2;
+ count++;
+ }
+ return count;
+ }
```

@@ -1276,7 +1423,12 @@ $$
=== "C#"
```csharp title="time_complexity.cs"
-
+ /* 对数阶(递归实现) */
+ int logRecur(float n)
+ {
+ if (n <= 1) return 0;
+ return logRecur(n / 2) + 1;
+ }
```
### 线性对数阶 $O(n \log n)$
@@ -1366,7 +1518,18 @@ $$
=== "C#"
```csharp title="time_complexity.cs"
-
+ /* 线性对数阶 */
+ int linearLogRecur(float n)
+ {
+ if (n <= 1) return 1;
+ int count = linearLogRecur(n / 2) +
+ linearLogRecur(n / 2);
+ for (int i = 0; i < n; i++)
+ {
+ count++;
+ }
+ return count;
+ }
```

@@ -1464,7 +1627,18 @@ $$
=== "C#"
```csharp title="time_complexity.cs"
-
+ /* 阶乘阶(递归实现) */
+ int factorialRecur(int n)
+ {
+ if (n == 0) return 1;
+ int count = 0;
+ // 从 1 个分裂出 n 个
+ for (int i = 0; i < n; i++)
+ {
+ count += factorialRecur(n - 1);
+ }
+ return count;
+ }
```

@@ -1652,7 +1826,38 @@ $$
=== "C#"
```csharp title="worst_best_time_complexity.cs"
+ public class worst_best_time_complexity
+ {
+ /* 生成一个数组,元素为 { 1, 2, ..., n },顺序被打乱 */
+ static int[] randomNumbers(int n)
+ {
+ int[] nums = new int[n];
+ // 生成数组 nums = { 1, 2, 3, ..., n }
+ for (int i = 0; i < n; i++)
+ {
+ nums[i] = i + 1;
+ }
+ // 随机打乱数组元素
+ nums = nums.OrderBy(num => System.Random.Shared.Next()).ToArray();
+ return nums;
+ }
+ /* 查找数组 nums 中数字 1 所在索引 */
+ static int findOne(in Span nums) => nums.IndexOf(1);
+
+ /* Driver Code */
+ public static void main()
+ {
+ for (int i = 0; i < 10; i++)
+ {
+ int n = 100;
+ int[] nums = randomNumbers(n);
+ int index = findOne(nums);
+ System.Console.WriteLine($"打乱后的数组为 [{string.Join(",", nums)}]");
+ System.Console.WriteLine($"数字 1 的索引为 [{index}]");
+ }
+ }
+ }
```
!!! tip