Migrate time_complexity java implementation to kotlin to for en docs
This commit is contained in:
parent
a1b0c3e908
commit
86933b1bcf
@ -0,0 +1,160 @@
|
||||
/**
|
||||
* File: time_complexity.kt
|
||||
* Created Time: 2024-07-14
|
||||
* Author: eyedol
|
||||
*/
|
||||
package chapter_computational_complexity.time_complexity
|
||||
|
||||
/* Constant complexity */
|
||||
fun constant(n: Int): Int {
|
||||
var count = 0
|
||||
val size = 100000
|
||||
for (i in 0 until size) count++
|
||||
return count
|
||||
}
|
||||
|
||||
/* Linear complexity */
|
||||
fun linear(n: Int): Int {
|
||||
var count = 0
|
||||
for (i in 0 until n) count++
|
||||
return count
|
||||
}
|
||||
|
||||
/* Linear complexity (traversing an array) */
|
||||
fun arrayTraversal(nums: IntArray): Int {
|
||||
var count = 0
|
||||
// Loop count is proportional to the length of the array
|
||||
for (num in nums) {
|
||||
count++
|
||||
}
|
||||
return count
|
||||
}
|
||||
|
||||
/* Quadratic complexity */
|
||||
fun quadratic(n: Int): Int {
|
||||
var count = 0
|
||||
// Loop count is squared in relation to the data size n
|
||||
for (i in 0 until n) {
|
||||
for (j in 0 until n) {
|
||||
count++
|
||||
}
|
||||
}
|
||||
return count
|
||||
}
|
||||
|
||||
/* Quadratic complexity (bubble sort) */
|
||||
fun bubbleSort(nums: IntArray): Int {
|
||||
var count = 0 // Counter
|
||||
// Outer loop: unsorted range is [0, i]
|
||||
for (i in nums.size - 1 downTo 1) {
|
||||
// Inner loop: swap the largest element in the unsorted range [0, i] to the right end of the range
|
||||
for (j in 0 until i) {
|
||||
if (nums[j] > nums[j + 1]) {
|
||||
// Swap nums[j] and nums[j + 1]
|
||||
val tmp = nums[j]
|
||||
nums[j] = nums[j + 1]
|
||||
nums[j + 1] = tmp
|
||||
count += 3 // Element swap includes 3 individual operations
|
||||
}
|
||||
}
|
||||
}
|
||||
return count
|
||||
}
|
||||
|
||||
/* Exponential complexity (loop implementation) */
|
||||
fun exponential(n: Int): Int {
|
||||
var count = 0
|
||||
var base = 1
|
||||
// Cells split into two every round, forming the sequence 1, 2, 4, 8, ..., 2^(n-1)
|
||||
for (i in 0 until n) {
|
||||
for (j in 0 until base) {
|
||||
count++
|
||||
}
|
||||
base *= 2
|
||||
}
|
||||
// count = 1 + 2 + 4 + 8 + .. + 2^(n-1) = 2^n - 1
|
||||
return count
|
||||
}
|
||||
|
||||
/* Exponential complexity (recursive implementation) */
|
||||
fun expRecur(n: Int): Int {
|
||||
if (n == 1) return 1
|
||||
return expRecur(n - 1) + expRecur(n - 1) + 1
|
||||
}
|
||||
|
||||
/* Logarithmic complexity (loop implementation) */
|
||||
fun logarithmic(n: Int): Int {
|
||||
var n1 = n
|
||||
var count = 0
|
||||
while (n1 > 1) {
|
||||
n1 /= 2
|
||||
count++
|
||||
}
|
||||
return count
|
||||
}
|
||||
|
||||
/* Logarithmic complexity (recursive implementation) */
|
||||
fun logRecur(n: Int): Int {
|
||||
if (n <= 1) return 0
|
||||
return logRecur(n / 2) + 1
|
||||
}
|
||||
|
||||
/* Linear logarithmic complexity */
|
||||
fun linearLogRecur(n: Int): Int {
|
||||
if (n <= 1) return 1
|
||||
var count = linearLogRecur(n / 2) + linearLogRecur(n / 2)
|
||||
for (i in 0 until n) {
|
||||
count++
|
||||
}
|
||||
return count
|
||||
}
|
||||
|
||||
/* Factorial complexity (recursive implementation) */
|
||||
fun factorialRecur(n: Int): Int {
|
||||
if (n == 0) return 1
|
||||
var count = 0
|
||||
// From 1 split into n
|
||||
for (i in 0 until n) {
|
||||
count += factorialRecur(n - 1)
|
||||
}
|
||||
return count
|
||||
}
|
||||
|
||||
/* Driver Code */
|
||||
fun main() {
|
||||
// Can modify n to experience the trend of operation count changes under various complexities
|
||||
val n = 8
|
||||
println("Input data size n = $n")
|
||||
|
||||
var count = constant(n)
|
||||
println("Number of constant complexity operations = $count")
|
||||
|
||||
count = linear(n)
|
||||
println("Number of linear complexity operations = $count")
|
||||
count = arrayTraversal(IntArray(n))
|
||||
println("Number of linear complexity operations (traversing the array) = $count")
|
||||
|
||||
count = quadratic(n)
|
||||
println("Number of quadratic order operations = $count")
|
||||
val nums = IntArray(n)
|
||||
for (i in 0 until n) nums[i] = n - i // [n,n-1,...,2,1]
|
||||
|
||||
count = bubbleSort(nums)
|
||||
println("Number of quadratic order operations (bubble sort) = $count")
|
||||
|
||||
count = exponential(n)
|
||||
println("Number of exponential complexity operations (implemented by loop) = $count")
|
||||
count = expRecur(n)
|
||||
println("Number of exponential complexity operations (implemented by recursion) = $count")
|
||||
|
||||
count = logarithmic(n)
|
||||
println("Number of logarithmic complexity operations (implemented by loop) = $count")
|
||||
count = logRecur(n)
|
||||
println("Number of logarithmic complexity operations (implemented by recursion) = $count")
|
||||
|
||||
count = linearLogRecur(n)
|
||||
println("Number of linear logarithmic complexity operations (implemented by recursion) = $count")
|
||||
|
||||
count = factorialRecur(n)
|
||||
println("Number of factorial complexity operations (implemented by recursion) = $count")
|
||||
}
|
Loading…
Reference in New Issue
Block a user