diff --git a/docs/chapter_dynamic_programming/dp_solution_pipeline.md b/docs/chapter_dynamic_programming/dp_solution_pipeline.md index 09174da92..f665d1a06 100644 --- a/docs/chapter_dynamic_programming/dp_solution_pipeline.md +++ b/docs/chapter_dynamic_programming/dp_solution_pipeline.md @@ -53,7 +53,7 @@ comments: true 至此,我们就得到了图 14-11 所示的二维 $dp$ 矩阵,其尺寸与输入网格 $grid$ 相同。 -![状态定义与 dp 表](dp_solution_pipeline.assets/min_path_sum_solution_step1.png){ class="animation-figure" } +![状态定义与 dp 表](dp_solution_pipeline.assets/min_path_sum_solution_state_definition.png){ class="animation-figure" }

图 14-11   状态定义与 dp 表

@@ -73,7 +73,7 @@ $$ dp[i, j] = \min(dp[i-1, j], dp[i, j-1]) + grid[i, j] $$ -![最优子结构与状态转移方程](dp_solution_pipeline.assets/min_path_sum_solution_step2.png){ class="animation-figure" } +![最优子结构与状态转移方程](dp_solution_pipeline.assets/min_path_sum_solution_state_transition.png){ class="animation-figure" }

图 14-12   最优子结构与状态转移方程

@@ -89,7 +89,7 @@ $$ 如图 14-13 所示,由于每个格子是由其左方格子和上方格子转移而来,因此我们使用循环来遍历矩阵,外循环遍历各行,内循环遍历各列。 -![边界条件与状态转移顺序](dp_solution_pipeline.assets/min_path_sum_solution_step3.png){ class="animation-figure" } +![边界条件与状态转移顺序](dp_solution_pipeline.assets/min_path_sum_solution_initial_state.png){ class="animation-figure" }

图 14-13   边界条件与状态转移顺序

diff --git a/docs/chapter_graph/graph_operations.md b/docs/chapter_graph/graph_operations.md index ec8f8df2e..6cee05db1 100644 --- a/docs/chapter_graph/graph_operations.md +++ b/docs/chapter_graph/graph_operations.md @@ -16,19 +16,19 @@ comments: true - **初始化**:传入 $n$ 个顶点,初始化长度为 $n$ 的顶点列表 `vertices` ,使用 $O(n)$ 时间;初始化 $n \times n$ 大小的邻接矩阵 `adjMat` ,使用 $O(n^2)$ 时间。 === "初始化邻接矩阵" - ![邻接矩阵的初始化、增删边、增删顶点](graph_operations.assets/adjacency_matrix_initialization.png){ class="animation-figure" } + ![邻接矩阵的初始化、增删边、增删顶点](graph_operations.assets/adjacency_matrix_step1_initialization.png){ class="animation-figure" } === "添加边" - ![adjacency_matrix_add_edge](graph_operations.assets/adjacency_matrix_add_edge.png){ class="animation-figure" } + ![adjacency_matrix_add_edge](graph_operations.assets/adjacency_matrix_step2_add_edge.png){ class="animation-figure" } === "删除边" - ![adjacency_matrix_remove_edge](graph_operations.assets/adjacency_matrix_remove_edge.png){ class="animation-figure" } + ![adjacency_matrix_remove_edge](graph_operations.assets/adjacency_matrix_step3_remove_edge.png){ class="animation-figure" } === "添加顶点" - ![adjacency_matrix_add_vertex](graph_operations.assets/adjacency_matrix_add_vertex.png){ class="animation-figure" } + ![adjacency_matrix_add_vertex](graph_operations.assets/adjacency_matrix_step4_add_vertex.png){ class="animation-figure" } === "删除顶点" - ![adjacency_matrix_remove_vertex](graph_operations.assets/adjacency_matrix_remove_vertex.png){ class="animation-figure" } + ![adjacency_matrix_remove_vertex](graph_operations.assets/adjacency_matrix_step5_remove_vertex.png){ class="animation-figure" }

图 9-7   邻接矩阵的初始化、增删边、增删顶点

@@ -1061,19 +1061,19 @@ comments: true - **初始化**:在邻接表中创建 $n$ 个顶点和 $2m$ 条边,使用 $O(n + m)$ 时间。 === "初始化邻接表" - ![邻接表的初始化、增删边、增删顶点](graph_operations.assets/adjacency_list_initialization.png){ class="animation-figure" } + ![邻接表的初始化、增删边、增删顶点](graph_operations.assets/adjacency_list_step1_initialization.png){ class="animation-figure" } === "添加边" - ![adjacency_list_add_edge](graph_operations.assets/adjacency_list_add_edge.png){ class="animation-figure" } + ![adjacency_list_add_edge](graph_operations.assets/adjacency_list_step2_add_edge.png){ class="animation-figure" } === "删除边" - ![adjacency_list_remove_edge](graph_operations.assets/adjacency_list_remove_edge.png){ class="animation-figure" } + ![adjacency_list_remove_edge](graph_operations.assets/adjacency_list_step3_remove_edge.png){ class="animation-figure" } === "添加顶点" - ![adjacency_list_add_vertex](graph_operations.assets/adjacency_list_add_vertex.png){ class="animation-figure" } + ![adjacency_list_add_vertex](graph_operations.assets/adjacency_list_step4_add_vertex.png){ class="animation-figure" } === "删除顶点" - ![adjacency_list_remove_vertex](graph_operations.assets/adjacency_list_remove_vertex.png){ class="animation-figure" } + ![adjacency_list_remove_vertex](graph_operations.assets/adjacency_list_step5_remove_vertex.png){ class="animation-figure" }

图 9-8   邻接表的初始化、增删边、增删顶点

diff --git a/docs/chapter_stack_and_queue/deque.md b/docs/chapter_stack_and_queue/deque.md index 8309eb919..d146a7eb9 100644 --- a/docs/chapter_stack_and_queue/deque.md +++ b/docs/chapter_stack_and_queue/deque.md @@ -358,19 +358,19 @@ comments: true 如图 5-8 所示,我们将双向链表的头节点和尾节点视为双向队列的队首和队尾,同时实现在两端添加和删除节点的功能。 === "LinkedListDeque" - ![基于链表实现双向队列的入队出队操作](deque.assets/linkedlist_deque.png){ class="animation-figure" } + ![基于链表实现双向队列的入队出队操作](deque.assets/linkedlist_deque_step1.png){ class="animation-figure" } === "push_last()" - ![linkedlist_deque_push_last](deque.assets/linkedlist_deque_push_last.png){ class="animation-figure" } + ![linkedlist_deque_push_last](deque.assets/linkedlist_deque_step2_push_last.png){ class="animation-figure" } === "push_first()" - ![linkedlist_deque_push_first](deque.assets/linkedlist_deque_push_first.png){ class="animation-figure" } + ![linkedlist_deque_push_first](deque.assets/linkedlist_deque_step3_push_first.png){ class="animation-figure" } === "pop_last()" - ![linkedlist_deque_pop_last](deque.assets/linkedlist_deque_pop_last.png){ class="animation-figure" } + ![linkedlist_deque_pop_last](deque.assets/linkedlist_deque_step4_pop_last.png){ class="animation-figure" } === "pop_first()" - ![linkedlist_deque_pop_first](deque.assets/linkedlist_deque_pop_first.png){ class="animation-figure" } + ![linkedlist_deque_pop_first](deque.assets/linkedlist_deque_step5_pop_first.png){ class="animation-figure" }

图 5-8   基于链表实现双向队列的入队出队操作

@@ -1996,19 +1996,19 @@ comments: true 如图 5-9 所示,与基于数组实现队列类似,我们也可以使用环形数组来实现双向队列。 === "ArrayDeque" - ![基于数组实现双向队列的入队出队操作](deque.assets/array_deque.png){ class="animation-figure" } + ![基于数组实现双向队列的入队出队操作](deque.assets/array_deque_step1.png){ class="animation-figure" } === "push_last()" - ![array_deque_push_last](deque.assets/array_deque_push_last.png){ class="animation-figure" } + ![array_deque_push_last](deque.assets/array_deque_step2_push_last.png){ class="animation-figure" } === "push_first()" - ![array_deque_push_first](deque.assets/array_deque_push_first.png){ class="animation-figure" } + ![array_deque_push_first](deque.assets/array_deque_step3_push_first.png){ class="animation-figure" } === "pop_last()" - ![array_deque_pop_last](deque.assets/array_deque_pop_last.png){ class="animation-figure" } + ![array_deque_pop_last](deque.assets/array_deque_step4_pop_last.png){ class="animation-figure" } === "pop_first()" - ![array_deque_pop_first](deque.assets/array_deque_pop_first.png){ class="animation-figure" } + ![array_deque_pop_first](deque.assets/array_deque_step5_pop_first.png){ class="animation-figure" }

图 5-9   基于数组实现双向队列的入队出队操作

diff --git a/docs/chapter_stack_and_queue/queue.md b/docs/chapter_stack_and_queue/queue.md index 10d5aeaa0..e7600bde6 100755 --- a/docs/chapter_stack_and_queue/queue.md +++ b/docs/chapter_stack_and_queue/queue.md @@ -332,13 +332,13 @@ comments: true 如图 5-5 所示,我们可以将链表的“头节点”和“尾节点”分别视为“队首”和“队尾”,规定队尾仅可添加节点,队首仅可删除节点。 === "LinkedListQueue" - ![基于链表实现队列的入队出队操作](queue.assets/linkedlist_queue.png){ class="animation-figure" } + ![基于链表实现队列的入队出队操作](queue.assets/linkedlist_queue_step1.png){ class="animation-figure" } === "push()" - ![linkedlist_queue_push](queue.assets/linkedlist_queue_push.png){ class="animation-figure" } + ![linkedlist_queue_push](queue.assets/linkedlist_queue_step2_push.png){ class="animation-figure" } === "pop()" - ![linkedlist_queue_pop](queue.assets/linkedlist_queue_pop.png){ class="animation-figure" } + ![linkedlist_queue_pop](queue.assets/linkedlist_queue_step3_pop.png){ class="animation-figure" }

图 5-5   基于链表实现队列的入队出队操作

@@ -1231,13 +1231,13 @@ comments: true 可以看到,入队和出队操作都只需进行一次操作,时间复杂度均为 $O(1)$ 。 === "ArrayQueue" - ![基于数组实现队列的入队出队操作](queue.assets/array_queue.png){ class="animation-figure" } + ![基于数组实现队列的入队出队操作](queue.assets/array_queue_step1.png){ class="animation-figure" } === "push()" - ![array_queue_push](queue.assets/array_queue_push.png){ class="animation-figure" } + ![array_queue_push](queue.assets/array_queue_step2_push.png){ class="animation-figure" } === "pop()" - ![array_queue_pop](queue.assets/array_queue_pop.png){ class="animation-figure" } + ![array_queue_pop](queue.assets/array_queue_step3_pop.png){ class="animation-figure" }

图 5-6   基于数组实现队列的入队出队操作

diff --git a/docs/chapter_stack_and_queue/stack.md b/docs/chapter_stack_and_queue/stack.md index c6055d8df..0fead0b22 100755 --- a/docs/chapter_stack_and_queue/stack.md +++ b/docs/chapter_stack_and_queue/stack.md @@ -330,13 +330,13 @@ comments: true 如图 5-2 所示,对于入栈操作,我们只需将元素插入链表头部,这种节点插入方法被称为“头插法”。而对于出栈操作,只需将头节点从链表中删除即可。 === "LinkedListStack" - ![基于链表实现栈的入栈出栈操作](stack.assets/linkedlist_stack.png){ class="animation-figure" } + ![基于链表实现栈的入栈出栈操作](stack.assets/linkedlist_stack_step1.png){ class="animation-figure" } === "push()" - ![linkedlist_stack_push](stack.assets/linkedlist_stack_push.png){ class="animation-figure" } + ![linkedlist_stack_push](stack.assets/linkedlist_stack_step2_push.png){ class="animation-figure" } === "pop()" - ![linkedlist_stack_pop](stack.assets/linkedlist_stack_pop.png){ class="animation-figure" } + ![linkedlist_stack_pop](stack.assets/linkedlist_stack_step3_pop.png){ class="animation-figure" }

图 5-2   基于链表实现栈的入栈出栈操作

@@ -1094,13 +1094,13 @@ comments: true 使用数组实现栈时,我们可以将数组的尾部作为栈顶。如图 5-3 所示,入栈与出栈操作分别对应在数组尾部添加元素与删除元素,时间复杂度都为 $O(1)$ 。 === "ArrayStack" - ![基于数组实现栈的入栈出栈操作](stack.assets/array_stack.png){ class="animation-figure" } + ![基于数组实现栈的入栈出栈操作](stack.assets/array_stack_step1.png){ class="animation-figure" } === "push()" - ![array_stack_push](stack.assets/array_stack_push.png){ class="animation-figure" } + ![array_stack_push](stack.assets/array_stack_step2_push.png){ class="animation-figure" } === "pop()" - ![array_stack_pop](stack.assets/array_stack_pop.png){ class="animation-figure" } + ![array_stack_pop](stack.assets/array_stack_step3_pop.png){ class="animation-figure" }

图 5-3   基于数组实现栈的入栈出栈操作