From 37f11aff68f652953990df4d8d7836629cb118dc Mon Sep 17 00:00:00 2001 From: krahets Date: Sun, 9 Apr 2023 05:12:22 +0800 Subject: [PATCH] build --- chapter_array_and_linkedlist/array.md | 12 ++-- chapter_array_and_linkedlist/linked_list.md | 14 ++--- chapter_array_and_linkedlist/list.md | 39 ++++++------ .../space_complexity.md | 21 ++++--- .../space_time_tradeoff.md | 4 +- .../time_complexity.md | 41 ++++++------ chapter_graph/graph_operations.md | 34 +++++----- chapter_graph/graph_traversal.md | 18 +++--- chapter_hashing/hash_map.md | 24 +++---- chapter_heap/build_heap.md | 2 +- chapter_heap/heap.md | 16 ++--- chapter_searching/binary_search.md | 20 +++--- chapter_searching/hashing_search.md | 9 +-- chapter_searching/linear_search.md | 10 +-- chapter_sorting/bubble_sort.md | 6 +- chapter_sorting/bucket_sort.md | 1 + chapter_sorting/counting_sort.md | 4 +- chapter_sorting/insertion_sort.md | 6 +- chapter_sorting/merge_sort.md | 12 ++-- chapter_sorting/quick_sort.md | 14 ++--- chapter_sorting/radix_sort.md | 12 ++-- chapter_stack_and_queue/deque.md | 63 ++++++++++--------- chapter_stack_and_queue/queue.md | 42 +++++++------ chapter_stack_and_queue/stack.md | 39 ++++++------ chapter_tree/avl_tree.md | 24 +++---- chapter_tree/binary_search_tree.md | 10 +-- chapter_tree/binary_tree_traversal.md | 16 ++--- 27 files changed, 265 insertions(+), 248 deletions(-) diff --git a/chapter_array_and_linkedlist/array.md b/chapter_array_and_linkedlist/array.md index a60abd044..fbebaed75 100755 --- a/chapter_array_and_linkedlist/array.md +++ b/chapter_array_and_linkedlist/array.md @@ -150,7 +150,7 @@ elementAddr = firtstElementAddr + elementLength * elementIndex ```python title="array.py" def random_access(nums: list[int]) -> int: - """ 随机访问元素 """ + """随机访问元素""" # 在区间 [0, len(nums)-1] 中随机抽取一个数字 random_index = random.randint(0, len(nums) - 1) # 获取并返回随机元素 @@ -286,7 +286,7 @@ elementAddr = firtstElementAddr + elementLength * elementIndex ```python title="array.py" def extend(nums: list[int], enlarge: int) -> list[int]: - """ 扩展数组长度 """ + """扩展数组长度""" # 初始化一个扩展长度后的数组 res = [0] * (len(nums) + enlarge) # 将原数组中的所有元素复制到新数组 @@ -441,7 +441,7 @@ elementAddr = firtstElementAddr + elementLength * elementIndex ```python title="array.py" def insert(nums: list[int], num: int, index: int) -> None: - """ 在数组的索引 index 处插入元素 num """ + """在数组的索引 index 处插入元素 num""" # 把索引 index 以及之后的所有元素向后移动一位 for i in range(len(nums) - 1, index, -1): nums[i] = nums[i - 1] @@ -561,7 +561,7 @@ elementAddr = firtstElementAddr + elementLength * elementIndex ```python title="array.py" def remove(nums: list[int], index: int) -> None: - """ 删除索引 index 处元素 """ + """删除索引 index 处元素""" # 把索引 index 之后的所有元素向前移动一位 for i in range(index, len(nums) - 1): nums[i] = nums[i + 1] @@ -693,7 +693,7 @@ elementAddr = firtstElementAddr + elementLength * elementIndex ```python title="array.py" def traverse(nums: list[int]) -> None: - """ 遍历数组 """ + """遍历数组""" count = 0 # 通过索引遍历数组 for i in range(len(nums)): @@ -849,7 +849,7 @@ elementAddr = firtstElementAddr + elementLength * elementIndex ```python title="array.py" def find(nums: list[int], target: int) -> int: - """ 在数组中查找指定元素 """ + """在数组中查找指定元素""" for i in range(len(nums)): if nums[i] == target: return i diff --git a/chapter_array_and_linkedlist/linked_list.md b/chapter_array_and_linkedlist/linked_list.md index 3282f4669..07fbdf01c 100755 --- a/chapter_array_and_linkedlist/linked_list.md +++ b/chapter_array_and_linkedlist/linked_list.md @@ -4,11 +4,11 @@ comments: true # 4.2.   链表 -内存空间是所有程序的公共资源,排除已被占用的内存空间,空闲内存空间通常散落在内存各处。在上一节中,我们提到存储数组的内存空间必须是连续的,而当我们需要申请一个非常大的数组时,空闲内存中可能没有这么大的连续空间。 +内存空间是所有程序的公共资源,排除已被占用的内存空间,空闲内存空间通常散落在内存各处。在上一节中,我们提到存储数组的内存空间必须是连续的,而当我们需要申请一个非常大的数组时,空闲内存中可能没有这么大的连续空间。与数组相比,链表更具灵活性,它可以被存储在非连续的内存空间中。 -与数组相比,链表更具灵活性,因为它可以存储在非连续的内存空间。「链表 Linked List」是一种线性数据结构,其每个元素都是一个节点对象,各个节点之间通过指针连接,从当前节点通过指针可以访问到下一个节点。由于指针记录了下个节点的内存地址,因此无需保证内存地址的连续性,从而可以将各个节点分散存储在内存各处。 +「链表 Linked List」是一种线性数据结构,其每个元素都是一个节点对象,各个节点之间通过指针连接,从当前节点通过指针可以访问到下一个节点。**由于指针记录了下个节点的内存地址,因此无需保证内存地址的连续性**,从而可以将各个节点分散存储在内存各处。 -链表「节点 Node」包含两项数据,一是节点「值 Value」,二是指向下一节点的「指针 Pointer」,或称指向下一节点的「引用 Reference」。 +链表「节点 Node」包含两项数据,一是节点「值 Value」,二是指向下一节点的「指针 Pointer」,或称「引用 Reference」。 ![链表定义与存储方式](linked_list.assets/linkedlist_definition.png) @@ -374,7 +374,7 @@ comments: true ```python title="linked_list.py" def insert(n0: ListNode, P: ListNode) -> None: - """ 在链表的节点 n0 之后插入节点 P """ + """在链表的节点 n0 之后插入节点 P""" n1 = n0.next P.next = n1 n0.next = P @@ -493,7 +493,7 @@ comments: true ```python title="linked_list.py" def remove(n0: ListNode) -> None: - """ 删除链表的节点 n0 之后的首个节点 """ + """删除链表的节点 n0 之后的首个节点""" if not n0.next: return # n0 -> P -> n1 @@ -632,7 +632,7 @@ comments: true ```python title="linked_list.py" def access(head: ListNode, index: int) -> ListNode | None: - """ 访问链表中索引为 index 的节点 """ + """访问链表中索引为 index 的节点""" for _ in range(index): if not head: return None @@ -780,7 +780,7 @@ comments: true ```python title="linked_list.py" def find(head: ListNode, target: int) -> int: - """ 在链表中查找值为 target 的首个节点 """ + """在链表中查找值为 target 的首个节点""" index = 0 while head: if head.val == target: diff --git a/chapter_array_and_linkedlist/list.md b/chapter_array_and_linkedlist/list.md index 74c1073b3..1d0cab448 100755 --- a/chapter_array_and_linkedlist/list.md +++ b/chapter_array_and_linkedlist/list.md @@ -934,35 +934,36 @@ comments: true ```python title="my_list.py" class MyList: - """ 列表类简易实现 """ + """列表类简易实现""" + def __init__(self): - """ 构造方法 """ - self.__capacity: int = 10 # 列表容量 + """构造方法""" + self.__capacity: int = 10 # 列表容量 self.__nums: my_list[int] = [0] * self.__capacity # 数组(存储列表元素) - self.__size: int = 0 # 列表长度(即当前元素数量) - self.__extend_ratio: int = 2 # 每次列表扩容的倍数 + self.__size: int = 0 # 列表长度(即当前元素数量) + self.__extend_ratio: int = 2 # 每次列表扩容的倍数 def size(self) -> int: - """ 获取列表长度(即当前元素数量) """ + """获取列表长度(即当前元素数量)""" return self.__size - + def capacity(self) -> int: - """ 获取列表容量 """ + """获取列表容量""" return self.__capacity - + def get(self, index: int) -> int: - """ 访问元素 """ + """访问元素""" # 索引如果越界则抛出异常,下同 assert index >= 0 and index < self.__size, "索引越界" return self.__nums[index] def set(self, num: int, index: int) -> None: - """ 更新元素 """ + """更新元素""" assert index >= 0 and index < self.__size, "索引越界" self.__nums[index] = num - + def add(self, num: int) -> None: - """ 尾部添加元素 """ + """尾部添加元素""" # 元素数量超出容量时,触发扩容机制 if self.size() == self.capacity(): self.extend_capacity() @@ -970,7 +971,7 @@ comments: true self.__size += 1 def insert(self, num: int, index: int) -> None: - """ 中间插入元素 """ + """中间插入元素""" assert index >= 0 and index < self.__size, "索引越界" # 元素数量超出容量时,触发扩容机制 if self.__size == self.capacity(): @@ -983,7 +984,7 @@ comments: true self.__size += 1 def remove(self, index: int) -> int: - """ 删除元素 """ + """删除元素""" assert index >= 0 and index < self.__size, "索引越界" num = self.__nums[index] # 索引 i 之后的元素都向前移动一位 @@ -995,15 +996,15 @@ comments: true return num def extend_capacity(self) -> None: - """ 列表扩容 """ + """列表扩容""" # 新建一个长度为 self.__size 的数组,并将原数组拷贝到新数组 self.__nums = self.__nums + [0] * self.capacity() * (self.__extend_ratio - 1) # 更新列表容量 self.__capacity = len(self.__nums) - + def to_array(self) -> list[int]: - """ 返回有效长度的列表 """ - return self.__nums[:self.__size] + """返回有效长度的列表""" + return self.__nums[: self.__size] ``` === "Go" diff --git a/chapter_computational_complexity/space_complexity.md b/chapter_computational_complexity/space_complexity.md index 0e2df14af..d4b100526 100755 --- a/chapter_computational_complexity/space_complexity.md +++ b/chapter_computational_complexity/space_complexity.md @@ -626,7 +626,7 @@ $$ ```python title="space_complexity.py" def constant(n: int) -> None: - """ 常数阶 """ + """常数阶""" # 常量、变量、对象占用 O(1) 空间 a: int = 0 nums: list[int] = [0] * 10000 @@ -831,7 +831,7 @@ $$ ```python title="space_complexity.py" def linear(n: int) -> None: - """ 线性阶 """ + """线性阶""" # 长度为 n 的列表占用 O(n) 空间 nums: list[int] = [0] * n # 长度为 n 的哈希表占用 O(n) 空间 @@ -998,9 +998,10 @@ $$ ```python title="space_complexity.py" def linear_recur(n: int) -> None: - """ 线性阶(递归实现) """ + """线性阶(递归实现)""" print("递归 n =", n) - if n == 1: return + if n == 1: + return linear_recur(n - 1) ``` @@ -1129,7 +1130,7 @@ $$ ```python title="space_complexity.py" def quadratic(n: int) -> None: - """ 平方阶 """ + """平方阶""" # 二维列表占用 O(n^2) 空间 num_matrix: list[list[int]] = [[0] * n for _ in range(n)] ``` @@ -1277,8 +1278,9 @@ $$ ```python title="space_complexity.py" def quadratic_recur(n: int) -> int: - """ 平方阶(递归实现) """ - if n <= 0: return 0 + """平方阶(递归实现)""" + if n <= 0: + return 0 # 数组 nums 长度为 n, n-1, ..., 2, 1 nums: list[int] = [0] * n return quadratic_recur(n - 1) @@ -1407,8 +1409,9 @@ $$ ```python title="space_complexity.py" def build_tree(n: int) -> TreeNode | None: - """ 指数阶(建立满二叉树) """ - if n == 0: return None + """指数阶(建立满二叉树)""" + if n == 0: + return None root = TreeNode(0) root.left = build_tree(n - 1) root.right = build_tree(n - 1) diff --git a/chapter_computational_complexity/space_time_tradeoff.md b/chapter_computational_complexity/space_time_tradeoff.md index 9009448fe..2644b4a99 100755 --- a/chapter_computational_complexity/space_time_tradeoff.md +++ b/chapter_computational_complexity/space_time_tradeoff.md @@ -66,7 +66,7 @@ comments: true ```python title="leetcode_two_sum.py" def two_sum_brute_force(nums: list[int], target: int) -> list[int]: - """ 方法一:暴力枚举 """ + """方法一:暴力枚举""" # 两层循环,时间复杂度 O(n^2) for i in range(len(nums) - 1): for j in range(i + 1, len(nums)): @@ -243,7 +243,7 @@ comments: true ```python title="leetcode_two_sum.py" def two_sum_hash_table(nums: list[int], target: int) -> list[int]: - """ 方法二:辅助哈希表 """ + """方法二:辅助哈希表""" # 辅助哈希表,空间复杂度 O(n) dic = {} # 单层循环,时间复杂度 O(n) diff --git a/chapter_computational_complexity/time_complexity.md b/chapter_computational_complexity/time_complexity.md index 013650802..9aa23ed2e 100755 --- a/chapter_computational_complexity/time_complexity.md +++ b/chapter_computational_complexity/time_complexity.md @@ -820,7 +820,7 @@ $$ ```python title="time_complexity.py" def constant(n: int) -> int: - """ 常数阶 """ + """常数阶""" count: int = 0 size: int = 100000 for _ in range(size): @@ -948,7 +948,7 @@ $$ ```python title="time_complexity.py" def linear(n: int) -> int: - """ 线性阶 """ + """线性阶""" count: int = 0 for _ in range(n): count += 1 @@ -1074,7 +1074,7 @@ $$ ```python title="time_complexity.py" def array_traversal(nums: list[int]) -> int: - """ 线性阶(遍历数组)""" + """线性阶(遍历数组)""" count: int = 0 # 循环次数与数组长度成正比 for num in nums: @@ -1214,7 +1214,7 @@ $$ ```python title="time_complexity.py" def quadratic(n: int) -> int: - """ 平方阶 """ + """平方阶""" count: int = 0 # 循环次数与数组长度成平方关系 for i in range(n): @@ -1390,7 +1390,7 @@ $$ ```python title="time_complexity.py" def bubble_sort(nums: list[int]) -> int: - """ 平方阶(冒泡排序)""" + """平方阶(冒泡排序)""" count: int = 0 # 计数器 # 外循环:待排序元素数量为 n-1, n-2, ..., 1 for i in range(len(nums) - 1, 0, -1): @@ -1603,7 +1603,7 @@ $$ ```python title="time_complexity.py" def exponential(n: int) -> int: - """ 指数阶(循环实现)""" + """指数阶(循环实现)""" count: int = 0 base: int = 1 # cell 每轮一分为二,形成数列 1, 2, 4, 8, ..., 2^(n-1) @@ -1768,8 +1768,9 @@ $$ ```python title="time_complexity.py" def exp_recur(n: int) -> int: - """ 指数阶(递归实现)""" - if n == 1: return 1 + """指数阶(递归实现)""" + if n == 1: + return 1 return exp_recur(n - 1) + exp_recur(n - 1) + 1 ``` @@ -1884,7 +1885,7 @@ $$ ```python title="time_complexity.py" def logarithmic(n: float) -> int: - """ 对数阶(循环实现)""" + """对数阶(循环实现)""" count: int = 0 while n > 1: n = n / 2 @@ -2017,8 +2018,9 @@ $$ ```python title="time_complexity.py" def log_recur(n: float) -> int: - """ 对数阶(递归实现)""" - if n <= 1: return 0 + """对数阶(递归实现)""" + if n <= 1: + return 0 return log_recur(n / 2) + 1 ``` @@ -2133,10 +2135,10 @@ $$ ```python title="time_complexity.py" def linear_log_recur(n: float) -> int: - """ 线性对数阶 """ - if n <= 1: return 1 - count: int = linear_log_recur(n // 2) + \ - linear_log_recur(n // 2) + """线性对数阶""" + if n <= 1: + return 1 + count: int = linear_log_recur(n // 2) + linear_log_recur(n // 2) for _ in range(n): count += 1 return count @@ -2290,8 +2292,9 @@ $$ ```python title="time_complexity.py" def factorial_recur(n: int) -> int: - """ 阶乘阶(递归实现)""" - if n == 0: return 1 + """阶乘阶(递归实现)""" + if n == 0: + return 1 count: int = 0 # 从 1 个分裂出 n 个 for _ in range(n): @@ -2480,7 +2483,7 @@ $$ ```python title="worst_best_time_complexity.py" def random_numbers(n: int) -> list[int]: - """ 生成一个数组,元素为: 1, 2, ..., n ,顺序被打乱 """ + """生成一个数组,元素为: 1, 2, ..., n ,顺序被打乱""" # 生成数组 nums =: 1, 2, 3, ..., n nums: list[int] = [i for i in range(1, n + 1)] # 随机打乱数组元素 @@ -2488,7 +2491,7 @@ $$ return nums def find_one(nums: list[int]) -> int: - """ 查找数组 nums 中数字 1 所在索引 """ + """查找数组 nums 中数字 1 所在索引""" for i in range(len(nums)): # 当元素 1 在数组头部时,达到最佳时间复杂度 O(1) # 当元素 1 在数组尾部时,达到最差时间复杂度 O(n) diff --git a/chapter_graph/graph_operations.md b/chapter_graph/graph_operations.md index 9b4506225..a141c32f8 100644 --- a/chapter_graph/graph_operations.md +++ b/chapter_graph/graph_operations.md @@ -214,14 +214,15 @@ comments: true ```python title="graph_adjacency_matrix.py" class GraphAdjMat: - """ 基于邻接矩阵实现的无向图类 """ + """基于邻接矩阵实现的无向图类""" + # 顶点列表,元素代表“顶点值”,索引代表“顶点索引” vertices: list[int] = [] # 邻接矩阵,行列索引对应“顶点索引” adj_mat: list[list[int]] = [] def __init__(self, vertices: list[int], edges: list[list[int]]) -> None: - """ 构造方法 """ + """构造方法""" self.vertices: list[int] = [] self.adj_mat: list[list[int]] = [] # 添加顶点 @@ -233,11 +234,11 @@ comments: true self.add_edge(e[0], e[1]) def size(self) -> int: - """ 获取顶点数量 """ + """获取顶点数量""" return len(self.vertices) def add_vertex(self, val: int) -> None: - """ 添加顶点 """ + """添加顶点""" n = self.size() # 向顶点列表中添加新顶点的值 self.vertices.append(val) @@ -249,7 +250,7 @@ comments: true row.append(0) def remove_vertex(self, index: int) -> None: - """ 删除顶点 """ + """删除顶点""" if index >= self.size(): raise IndexError() # 在顶点列表中移除索引 index 的顶点 @@ -261,7 +262,7 @@ comments: true row.pop(index) def add_edge(self, i: int, j: int) -> None: - """ 添加边 """ + """添加边""" # 参数 i, j 对应 vertices 元素索引 # 索引越界与相等处理 if i < 0 or j < 0 or i >= self.size() or j >= self.size() or i == j: @@ -271,7 +272,7 @@ comments: true self.adj_mat[j][i] = 1 def remove_edge(self, i: int, j: int) -> None: - """ 删除边 """ + """删除边""" # 参数 i, j 对应 vertices 元素索引 # 索引越界与相等处理 if i < 0 or j < 0 or i >= self.size() or j >= self.size() or i == j: @@ -280,7 +281,7 @@ comments: true self.adj_mat[j][i] = 0 def print(self) -> None: - """ 打印邻接矩阵 """ + """打印邻接矩阵""" print("顶点列表 =", self.vertices) print("邻接矩阵 =") print_matrix(self.adj_mat) @@ -966,9 +967,10 @@ comments: true ```python title="graph_adjacency_list.py" class GraphAdjList: - """ 基于邻接表实现的无向图类 """ + """基于邻接表实现的无向图类""" + def __init__(self, edges: list[list[Vertex]]) -> None: - """ 构造方法 """ + """构造方法""" # 邻接表,key: 顶点,value:该顶点的所有邻接顶点 self.adj_list = dict[Vertex, Vertex]() # 添加所有顶点和边 @@ -978,11 +980,11 @@ comments: true self.add_edge(edge[0], edge[1]) def size(self) -> int: - """ 获取顶点数量 """ + """获取顶点数量""" return len(self.adj_list) def add_edge(self, vet1: Vertex, vet2: Vertex) -> None: - """ 添加边 """ + """添加边""" if vet1 not in self.adj_list or vet2 not in self.adj_list or vet1 == vet2: raise ValueError # 添加边 vet1 - vet2 @@ -990,7 +992,7 @@ comments: true self.adj_list[vet2].append(vet1) def remove_edge(self, vet1: Vertex, vet2: Vertex) -> None: - """ 删除边 """ + """删除边""" if vet1 not in self.adj_list or vet2 not in self.adj_list or vet1 == vet2: raise ValueError # 删除边 vet1 - vet2 @@ -998,14 +1000,14 @@ comments: true self.adj_list[vet2].remove(vet1) def add_vertex(self, vet: Vertex) -> None: - """ 添加顶点 """ + """添加顶点""" if vet in self.adj_list: return # 在邻接表中添加一个新链表 self.adj_list[vet] = [] def remove_vertex(self, vet: Vertex) -> None: - """ 删除顶点 """ + """删除顶点""" if vet not in self.adj_list: raise ValueError # 在邻接表中删除顶点 vet 对应的链表 @@ -1016,7 +1018,7 @@ comments: true self.adj_list[vertex].remove(vet) def print(self) -> None: - """ 打印邻接表 """ + """打印邻接表""" print("邻接表 =") for vertex in self.adj_list: tmp = [v.val for v in self.adj_list[vertex]] diff --git a/chapter_graph/graph_traversal.md b/chapter_graph/graph_traversal.md index c19b64171..db58b5a68 100644 --- a/chapter_graph/graph_traversal.md +++ b/chapter_graph/graph_traversal.md @@ -94,7 +94,7 @@ BFS 通常借助「队列」来实现。队列具有“先入先出”的性质 ```python title="graph_bfs.py" def graph_bfs(graph: GraphAdjList, start_vet: Vertex) -> list[Vertex]: - """ 广度优先遍历 BFS """ + """广度优先遍历 BFS""" # 使用邻接表来表示图,以便获取指定顶点的所有邻接顶点 # 顶点遍历序列 res = [] @@ -105,13 +105,13 @@ BFS 通常借助「队列」来实现。队列具有“先入先出”的性质 # 以顶点 vet 为起点,循环直至访问完所有顶点 while len(que) > 0: vet = que.popleft() # 队首顶点出队 - res.append(vet) # 记录访问顶点 + res.append(vet) # 记录访问顶点 # 遍历该顶点的所有邻接顶点 for adj_vet in graph.adj_list[vet]: if adj_vet in visited: - continue # 跳过已被访问过的顶点 + continue # 跳过已被访问过的顶点 que.append(adj_vet) # 只入队未访问的顶点 - visited.add(adj_vet) # 标记该顶点已被访问 + visited.add(adj_vet) # 标记该顶点已被访问 # 返回顶点遍历序列 return res ``` @@ -379,18 +379,18 @@ BFS 通常借助「队列」来实现。队列具有“先入先出”的性质 ```python title="graph_dfs.py" def dfs(graph: GraphAdjList, visited: set[Vertex], res: list[Vertex], vet: Vertex): - """ 深度优先遍历 DFS 辅助函数 """ - res.append(vet) # 记录访问顶点 - visited.add(vet) # 标记该顶点已被访问 + """深度优先遍历 DFS 辅助函数""" + res.append(vet) # 记录访问顶点 + visited.add(vet) # 标记该顶点已被访问 # 遍历该顶点的所有邻接顶点 for adjVet in graph.adj_list[vet]: if adjVet in visited: - continue # 跳过已被访问过的顶点 + continue # 跳过已被访问过的顶点 # 递归访问邻接顶点 dfs(graph, visited, res, adjVet) def graph_dfs(graph: GraphAdjList, start_vet: Vertex) -> list[Vertex]: - """ 深度优先遍历 DFS """ + """深度优先遍历 DFS""" # 顶点遍历序列 res = [] # 哈希表,用于记录已被访问过的顶点 diff --git a/chapter_hashing/hash_map.md b/chapter_hashing/hash_map.md index c4b55d9a2..d7d6e10f4 100755 --- a/chapter_hashing/hash_map.md +++ b/chapter_hashing/hash_map.md @@ -607,25 +607,27 @@ $$ ```python title="array_hash_map.py" class Entry: - """ 键值对 int->String """ + """键值对 int->String""" + def __init__(self, key: int, val: str): self.key = key self.val = val class ArrayHashMap: - """ 基于数组简易实现的哈希表 """ + """基于数组简易实现的哈希表""" + def __init__(self): - """ 构造方法 """ + """构造方法""" # 初始化数组,包含 100 个桶 self.buckets: list[Entry | None] = [None] * 100 def hash_func(self, key: int) -> int: - """ 哈希函数 """ + """哈希函数""" index: int = key % 100 return index def get(self, key: int) -> str: - """ 查询操作 """ + """查询操作""" index: int = self.hash_func(key) pair: Entry = self.buckets[index] if pair is None: @@ -633,19 +635,19 @@ $$ return pair.val def put(self, key: int, val: str) -> None: - """ 添加操作 """ + """添加操作""" pair = Entry(key, val) index: int = self.hash_func(key) self.buckets[index] = pair def remove(self, key: int) -> None: - """ 删除操作 """ + """删除操作""" index: int = self.hash_func(key) # 置为 None ,代表删除 self.buckets[index] = None def entry_set(self) -> list[Entry]: - """ 获取所有键值对 """ + """获取所有键值对""" result: list[Entry] = [] for pair in self.buckets: if pair is not None: @@ -653,7 +655,7 @@ $$ return result def key_set(self) -> list[int]: - """ 获取所有键 """ + """获取所有键""" result: list[int] = [] for pair in self.buckets: if pair is not None: @@ -661,7 +663,7 @@ $$ return result def value_set(self) -> list[str]: - """ 获取所有值 """ + """获取所有值""" result: list[str] = [] for pair in self.buckets: if pair is not None: @@ -669,7 +671,7 @@ $$ return result def print(self) -> None: - """ 打印哈希表 """ + """打印哈希表""" for pair in self.buckets: if pair is not None: print(pair.key, "->", pair.val) diff --git a/chapter_heap/build_heap.md b/chapter_heap/build_heap.md index 5a0077df8..4c40dafa0 100644 --- a/chapter_heap/build_heap.md +++ b/chapter_heap/build_heap.md @@ -50,7 +50,7 @@ comments: true ```python title="my_heap.py" def __init__(self, nums: list[int]): - """ 构造方法 """ + """构造方法""" # 将列表元素原封不动添加进堆 self.max_heap = nums # 堆化除叶节点以外的其他所有节点 diff --git a/chapter_heap/heap.md b/chapter_heap/heap.md index 4c7829710..4e0f4203b 100644 --- a/chapter_heap/heap.md +++ b/chapter_heap/heap.md @@ -366,15 +366,15 @@ comments: true ```python title="my_heap.py" def left(self, i: int) -> int: - """ 获取左子节点索引 """ + """获取左子节点索引""" return 2 * i + 1 def right(self, i: int) -> int: - """ 获取右子节点索引 """ + """获取右子节点索引""" return 2 * i + 2 def parent(self, i: int) -> int: - """ 获取父节点索引 """ + """获取父节点索引""" return (i - 1) // 2 # 向下整除 ``` @@ -533,7 +533,7 @@ comments: true ```python title="my_heap.py" def peek(self) -> int: - """ 访问堆顶元素 """ + """访问堆顶元素""" return self.max_heap[0] ``` @@ -682,14 +682,14 @@ comments: true ```python title="my_heap.py" def push(self, val: int): - """ 元素入堆 """ + """元素入堆""" # 添加节点 self.max_heap.append(val) # 从底至顶堆化 self.sift_up(self.size() - 1) def sift_up(self, i: int): - """ 从节点 i 开始,从底至顶堆化 """ + """从节点 i 开始,从底至顶堆化""" while True: # 获取节点 i 的父节点 p = self.parent(i) @@ -996,7 +996,7 @@ comments: true ```python title="my_heap.py" def pop(self) -> int: - """ 元素出堆 """ + """元素出堆""" # 判空处理 assert not self.is_empty() # 交换根节点与最右叶节点(即交换首元素与尾元素) @@ -1009,7 +1009,7 @@ comments: true return val def sift_down(self, i: int): - """ 从节点 i 开始,从顶至底堆化 """ + """从节点 i 开始,从顶至底堆化""" while True: # 判断节点 i, l, r 中值最大的节点,记为 ma l, r, ma = self.left(i), self.right(i), i diff --git a/chapter_searching/binary_search.md b/chapter_searching/binary_search.md index b78bbe6a0..9cd8439bd 100755 --- a/chapter_searching/binary_search.md +++ b/chapter_searching/binary_search.md @@ -99,18 +99,18 @@ $$ ```python title="binary_search.py" def binary_search(nums: list[int], target: int) -> int: - """ 二分查找(双闭区间) """ + """二分查找(双闭区间)""" # 初始化双闭区间 [0, n-1] ,即 i, j 分别指向数组首元素、尾元素 i, j = 0, len(nums) - 1 while i <= j: - m = (i + j) // 2 # 计算中点索引 m - if nums[m] < target: # 此情况说明 target 在区间 [m+1, j] 中 + m = (i + j) // 2 # 计算中点索引 m + if nums[m] < target: # 此情况说明 target 在区间 [m+1, j] 中 i = m + 1 elif nums[m] > target: # 此情况说明 target 在区间 [i, m-1] 中 j = m - 1 else: - return m # 找到目标元素,返回其索引 - return -1 # 未找到目标元素,返回 -1 + return m # 找到目标元素,返回其索引 + return -1 # 未找到目标元素,返回 -1 ``` === "Go" @@ -310,19 +310,19 @@ $$ ```python title="binary_search.py" def binary_search1(nums: list[int], target: int) -> int: - """ 二分查找(左闭右开) """ + """二分查找(左闭右开)""" # 初始化左闭右开 [0, n) ,即 i, j 分别指向数组首元素、尾元素+1 i, j = 0, len(nums) # 循环,当搜索区间为空时跳出(当 i = j 时为空) while i < j: - m = (i + j) // 2 # 计算中点索引 m - if nums[m] < target: # 此情况说明 target 在区间 [m+1, j) 中 + m = (i + j) // 2 # 计算中点索引 m + if nums[m] < target: # 此情况说明 target 在区间 [m+1, j) 中 i = m + 1 elif nums[m] > target: # 此情况说明 target 在区间 [i, m) 中 j = m - else: # 找到目标元素,返回其索引 + else: # 找到目标元素,返回其索引 return m - return -1 # 未找到目标元素,返回 -1 + return -1 # 未找到目标元素,返回 -1 ``` === "Go" diff --git a/chapter_searching/hashing_search.md b/chapter_searching/hashing_search.md index f2ad3d30f..97c855578 100755 --- a/chapter_searching/hashing_search.md +++ b/chapter_searching/hashing_search.md @@ -46,7 +46,7 @@ comments: true ```python title="hashing_search.py" def hashing_search_array(mapp: dict[int, int], target: int) -> int: - """ 哈希查找(数组) """ + """哈希查找(数组)""" # 哈希表的 key: 目标元素,value: 索引 # 若哈希表中无此 key ,返回 -1 return mapp.get(target, -1) @@ -163,11 +163,8 @@ comments: true === "Python" ```python title="hashing_search.py" - def hashing_search_linkedlist(mapp: dict[int, ListNode], target: int) -> ListNode | None: - """ 哈希查找(链表) """ - # 哈希表的 key: 目标元素,value: 节点对象 - # 若哈希表中无此 key ,返回 None - return mapp.get(target, None) + def hashing_search_linkedlist( + mapp: dict[int, ListNode], target: int ``` === "Go" diff --git a/chapter_searching/linear_search.md b/chapter_searching/linear_search.md index d7e2396e3..1ae4d9efa 100755 --- a/chapter_searching/linear_search.md +++ b/chapter_searching/linear_search.md @@ -50,12 +50,12 @@ comments: true ```python title="linear_search.py" def linear_search_array(nums: list[int], target: int) -> int: - """ 线性查找(数组) """ + """线性查找(数组)""" # 遍历数组 for i in range(len(nums)): if nums[i] == target: # 找到目标元素,返回其索引 return i - return -1 # 未找到目标元素,返回 -1 + return -1 # 未找到目标元素,返回 -1 ``` === "Go" @@ -207,13 +207,13 @@ comments: true ```python title="linear_search.py" def linear_search_linkedlist(head: ListNode, target: int) -> ListNode | None: - """ 线性查找(链表) """ + """线性查找(链表)""" # 遍历链表 while head: - if head.val == target: # 找到目标节点,返回之 + if head.val == target: # 找到目标节点,返回之 return head head = head.next - return None # 未找到目标节点,返回 None + return None # 未找到目标节点,返回 None ``` === "Go" diff --git a/chapter_sorting/bubble_sort.md b/chapter_sorting/bubble_sort.md index 3419c32a5..6396a7d15 100755 --- a/chapter_sorting/bubble_sort.md +++ b/chapter_sorting/bubble_sort.md @@ -90,7 +90,7 @@ comments: true ```python title="bubble_sort.py" def bubble_sort(nums: list[int]) -> None: - """ 冒泡排序 """ + """冒泡排序""" n: int = len(nums) # 外循环:待排序元素数量为 n-1, n-2, ..., 1 for i in range(n - 1, 0, -1): @@ -294,7 +294,7 @@ comments: true ```python title="bubble_sort.py" def bubble_sort_with_flag(nums: list[int]) -> None: - """ 冒泡排序(标志优化) """ + """冒泡排序(标志优化)""" n: int = len(nums) # 外循环:待排序元素数量为 n-1, n-2, ..., 1 for i in range(n - 1, 0, -1): @@ -306,7 +306,7 @@ comments: true nums[j], nums[j + 1] = nums[j + 1], nums[j] flag = True # 记录交换元素 if not flag: - break # 此轮冒泡未交换任何元素,直接跳出 + break # 此轮冒泡未交换任何元素,直接跳出 ``` === "Go" diff --git a/chapter_sorting/bucket_sort.md b/chapter_sorting/bucket_sort.md index 09cfc3953..3d84c6b22 100644 --- a/chapter_sorting/bucket_sort.md +++ b/chapter_sorting/bucket_sort.md @@ -87,6 +87,7 @@ comments: true ```python title="bucket_sort.py" def bucket_sort(nums: list[float]) -> None: + """桶排序""" # 初始化 k = n/2 个桶,预期向每个桶分配 2 个元素 k = len(nums) // 2 buckets = [[] for _ in range(k)] diff --git a/chapter_sorting/counting_sort.md b/chapter_sorting/counting_sort.md index 592f943c4..ce8d6330d 100644 --- a/chapter_sorting/counting_sort.md +++ b/chapter_sorting/counting_sort.md @@ -76,7 +76,7 @@ comments: true ```python title="counting_sort.py" def counting_sort_naive(nums: list[int]) -> None: - """ 计数排序 """ + """计数排序""" # 简单实现,无法用于排序对象 # 1. 统计数组最大元素 m m = 0 @@ -346,7 +346,7 @@ $$ ```python title="counting_sort.py" def counting_sort(nums: list[int]) -> None: - """ 计数排序 """ + """计数排序""" # 完整实现,可排序对象,并且是稳定排序 # 1. 统计数组最大元素 m m = max(nums) diff --git a/chapter_sorting/insertion_sort.md b/chapter_sorting/insertion_sort.md index 05613d871..0dfc15b27 100755 --- a/chapter_sorting/insertion_sort.md +++ b/chapter_sorting/insertion_sort.md @@ -66,8 +66,8 @@ comments: true ```python title="insertion_sort.py" def insertion_sort(nums: list[int]) -> None: - """ 插入排序 """ - # 外循环:base = nums[1], nums[2], ..., nums[n-1] + """插入排序""" + # 外循环:base = nums[1], nums[2], ..., nums[n-1] for i in range(1, len(nums)): base: int = nums[i] j: int = i - 1 @@ -75,7 +75,7 @@ comments: true while j >= 0 and nums[j] > base: nums[j + 1] = nums[j] # 1. 将 nums[j] 向右移动一位 j -= 1 - nums[j + 1] = base # 2. 将 base 赋值到正确位置 + nums[j + 1] = base # 2. 将 base 赋值到正确位置 ``` === "Go" diff --git a/chapter_sorting/merge_sort.md b/chapter_sorting/merge_sort.md index 5205fe295..20e1b85d2 100755 --- a/chapter_sorting/merge_sort.md +++ b/chapter_sorting/merge_sort.md @@ -147,11 +147,11 @@ comments: true ```python title="merge_sort.py" def merge(nums: list[int], left: int, mid: int, right: int) -> None: - """ 合并左子数组和右子数组 """ + """合并左子数组和右子数组""" # 左子数组区间 [left, mid] # 右子数组区间 [mid + 1, right] # 初始化辅助数组 - tmp: list[int] = list(nums[left:right + 1]) + tmp: list[int] = list(nums[left : right + 1]) # 左子数组的起始索引和结束索引 left_start: int = 0 left_end: int = mid - left @@ -177,13 +177,13 @@ comments: true j += 1 def merge_sort(nums: list[int], left: int, right: int) -> None: - """ 归并排序 """ + """归并排序""" # 终止条件 if left >= right: - return # 当子数组长度为 1 时终止递归 + return # 当子数组长度为 1 时终止递归 # 划分阶段 - mid: int = (left + right) // 2 # 计算中点 - merge_sort(nums, left, mid) # 递归左子数组 + mid: int = (left + right) // 2 # 计算中点 + merge_sort(nums, left, mid) # 递归左子数组 merge_sort(nums, mid + 1, right) # 递归右子数组 # 合并阶段 merge(nums, left, mid, right) diff --git a/chapter_sorting/quick_sort.md b/chapter_sorting/quick_sort.md index e12f77e24..2fef0df47 100755 --- a/chapter_sorting/quick_sort.md +++ b/chapter_sorting/quick_sort.md @@ -101,7 +101,7 @@ comments: true ```python title="quick_sort.py" def partition(self, nums: list[int], left: int, right: int) -> int: - """ 哨兵划分 """ + """哨兵划分""" # 以 nums[left] 作为基准数 i, j = left, right while i < j: @@ -334,7 +334,7 @@ comments: true ```python title="quick_sort.py" def quick_sort(self, nums: list[int], left: int, right: int) -> None: - """ 快速排序 """ + """快速排序""" # 子数组长度为 1 时终止递归 if left >= right: return @@ -549,7 +549,7 @@ comments: true ```python title="quick_sort.py" def median_three(self, nums: list[int], left: int, mid: int, right: int) -> int: - """ 选取三个元素的中位数 """ + """选取三个元素的中位数""" # 此处使用异或运算来简化代码 # 异或规则为 0 ^ 0 = 1 ^ 1 = 0, 0 ^ 1 = 1 ^ 0 = 1 if (nums[left] < nums[mid]) ^ (nums[left] < nums[right]): @@ -559,7 +559,7 @@ comments: true return right def partition(self, nums: list[int], left: int, right: int) -> int: - """ 哨兵划分(三数取中值) """ + """哨兵划分(三数取中值)""" # 以 nums[left] 作为基准数 med: int = self.median_three(nums, left, (left + right) // 2, right) # 将中位数交换至数组最左端 @@ -842,7 +842,7 @@ comments: true ```python title="quick_sort.py" def quick_sort(self, nums: list[int], left: int, right: int) -> None: - """ 快速排序(尾递归优化) """ + """快速排序(尾递归优化)""" # 子数组长度为 1 时终止 while left < right: # 哨兵划分操作 @@ -850,10 +850,10 @@ comments: true # 对两个子数组中较短的那个执行快排 if pivot - left < right - pivot: self.quick_sort(nums, left, pivot - 1) # 递归排序左子数组 - left = pivot + 1 # 剩余待排序区间为 [pivot + 1, right] + left = pivot + 1 # 剩余待排序区间为 [pivot + 1, right] else: self.quick_sort(nums, pivot + 1, right) # 递归排序右子数组 - right = pivot - 1 # 剩余待排序区间为 [left, pivot - 1] + right = pivot - 1 # 剩余待排序区间为 [left, pivot - 1] ``` === "Go" diff --git a/chapter_sorting/radix_sort.md b/chapter_sorting/radix_sort.md index 5f4366b7d..7d56083a8 100644 --- a/chapter_sorting/radix_sort.md +++ b/chapter_sorting/radix_sort.md @@ -136,19 +136,19 @@ $$ ```python title="radix_sort.py" def digit(num: int, exp: int) -> int: - """ 获取元素 num 的第 k 位,其中 exp = 10^(k-1) """ + """获取元素 num 的第 k 位,其中 exp = 10^(k-1)""" # 传入 exp 而非 k 可以避免在此重复执行昂贵的次方计算 return (num // exp) % 10 def counting_sort_digit(nums: list[int], exp: int) -> None: - """ 计数排序(根据 nums 第 k 位排序) """ + """计数排序(根据 nums 第 k 位排序)""" # 十进制的位范围为 0~9 ,因此需要长度为 10 的桶 counter = [0] * 10 n = len(nums) # 统计 0~9 各数字的出现次数 for i in range(n): d = digit(nums[i], exp) # 获取 nums[i] 第 k 位,记为 d - counter[d] += 1 # 统计数字 d 的出现次数 + counter[d] += 1 # 统计数字 d 的出现次数 # 求前缀和,将“出现个数”转换为“数组索引” for i in range(1, 10): counter[i] += counter[i - 1] @@ -157,14 +157,14 @@ $$ for i in range(n - 1, -1, -1): d = digit(nums[i], exp) j = counter[d] - 1 # 获取 d 在数组中的索引 j - res[j] = nums[i] # 将当前元素填入索引 j - counter[d] -= 1 # 将 d 的数量减 1 + res[j] = nums[i] # 将当前元素填入索引 j + counter[d] -= 1 # 将 d 的数量减 1 # 使用结果覆盖原数组 nums for i in range(n): nums[i] = res[i] def radix_sort(nums: list[int]) -> None: - """ 基数排序 """ + """基数排序""" # 获取数组的最大元素,用于判断最大位数 m = max(nums) # 按照从低位到高位的顺序遍历 diff --git a/chapter_stack_and_queue/deque.md b/chapter_stack_and_queue/deque.md index 7fe9d5cb2..5023517f6 100644 --- a/chapter_stack_and_queue/deque.md +++ b/chapter_stack_and_queue/deque.md @@ -591,31 +591,33 @@ comments: true ```python title="linkedlist_deque.py" class ListNode: - """ 双向链表节点 """ + """双向链表节点""" + def __init__(self, val: int) -> None: - """ 构造方法 """ + """构造方法""" self.val: int = val self.next: ListNode | None = None # 后继节点引用(指针) self.prev: ListNode | None = None # 前驱节点引用(指针) class LinkedListDeque: - """ 基于双向链表实现的双向队列 """ + """基于双向链表实现的双向队列""" + def __init__(self) -> None: - """ 构造方法 """ - self.front: ListNode | None = None # 头节点 front + """构造方法""" + self.front: ListNode | None = None # 头节点 front self.rear: ListNode | None = None # 尾节点 rear - self.__size: int = 0 # 双向队列的长度 + self.__size: int = 0 # 双向队列的长度 def size(self) -> int: - """ 获取双向队列的长度 """ + """获取双向队列的长度""" return self.__size def is_empty(self) -> bool: - """ 判断双向队列是否为空 """ + """判断双向队列是否为空""" return self.size() == 0 def push(self, num: int, is_front: bool) -> None: - """ 入队操作 """ + """入队操作""" node = ListNode(num) # 若链表为空,则令 front, rear 都指向 node if self.is_empty(): @@ -635,15 +637,15 @@ comments: true self.__size += 1 # 更新队列长度 def push_first(self, num: int) -> None: - """ 队首入队 """ + """队首入队""" self.push(num, True) def push_last(self, num: int) -> None: - """ 队尾入队 """ + """队尾入队""" self.push(num, False) def pop(self, is_front: bool) -> int: - """ 出队操作 """ + """出队操作""" # 若队列为空,直接返回 None if self.is_empty(): return None @@ -669,23 +671,23 @@ comments: true return val def pop_first(self) -> int: - """ 队首出队 """ + """队首出队""" return self.pop(True) def pop_last(self) -> int: - """ 队尾出队 """ + """队尾出队""" return self.pop(False) def peek_first(self) -> int: - """ 访问队首元素 """ + """访问队首元素""" return None if self.is_empty() else self.front.val def peek_last(self) -> int: - """ 访问队尾元素 """ + """访问队尾元素""" return None if self.is_empty() else self.rear.val def to_array(self) -> list[int]: - """ 返回数组用于打印 """ + """返回数组用于打印""" node: ListNode | None = self.front res: list[int] = [0] * self.size() for i in range(self.size()): @@ -1583,34 +1585,35 @@ comments: true ```python title="array_deque.py" class ArrayDeque: - """ 基于环形数组实现的双向队列 """ + """基于环形数组实现的双向队列""" + def __init__(self, capacity: int) -> None: - """ 构造方法 """ + """构造方法""" self.__nums: list[int] = [0] * capacity self.__front: int = 0 self.__size: int = 0 def capacity(self) -> int: - """ 获取双向队列的容量 """ + """获取双向队列的容量""" return len(self.__nums) def size(self) -> int: - """ 获取双向队列的长度 """ + """获取双向队列的长度""" return self.__size def is_empty(self) -> bool: - """ 判断双向队列是否为空 """ + """判断双向队列是否为空""" return self.__size == 0 def index(self, i: int) -> int: - """ 计算环形数组索引 """ + """计算环形数组索引""" # 通过取余操作实现数组首尾相连 # 当 i 越过数组尾部后,回到头部 # 当 i 越过数组头部后,回到尾部 return (i + self.capacity()) % self.capacity() def push_first(self, num: int) -> None: - """ 队首入队 """ + """队首入队""" if self.__size == self.capacity(): print("双向队列已满") return @@ -1622,7 +1625,7 @@ comments: true self.__size += 1 def push_last(self, num: int) -> None: - """ 队尾入队 """ + """队尾入队""" if self.__size == self.capacity(): print("双向队列已满") return @@ -1633,7 +1636,7 @@ comments: true self.__size += 1 def pop_first(self) -> int: - """ 队首出队 """ + """队首出队""" num = self.peek_first() # 队首指针向后移动一位 self.__front = self.index(self.__front + 1) @@ -1641,25 +1644,25 @@ comments: true return num def pop_last(self) -> int: - """ 队尾出队 """ + """队尾出队""" num = self.peek_last() self.__size -= 1 return num def peek_first(self) -> int: - """ 访问队首元素 """ + """访问队首元素""" assert not self.is_empty(), "双向队列为空" return self.__nums[self.__front] def peek_last(self) -> int: - """ 访问队尾元素 """ + """访问队尾元素""" assert not self.is_empty(), "双向队列为空" # 计算尾元素索引 last = self.index(self.__front + self.__size - 1) return self.__nums[last] def to_array(self) -> list[int]: - """ 返回数组用于打印 """ + """返回数组用于打印""" # 仅转换有效长度范围内的列表元素 res = [] for i in range(self.__size): diff --git a/chapter_stack_and_queue/queue.md b/chapter_stack_and_queue/queue.md index 5c1f76d48..d2535d3bc 100755 --- a/chapter_stack_and_queue/queue.md +++ b/chapter_stack_and_queue/queue.md @@ -428,23 +428,24 @@ comments: true ```python title="linkedlist_queue.py" class LinkedListQueue: - """ 基于链表实现的队列 """ + """基于链表实现的队列""" + def __init__(self): - """ 构造方法 """ + """构造方法""" self.__front: ListNode | None = None # 头节点 front - self.__rear: ListNode | None = None # 尾节点 rear + self.__rear: ListNode | None = None # 尾节点 rear self.__size: int = 0 def size(self) -> int: - """ 获取队列的长度 """ + """获取队列的长度""" return self.__size def is_empty(self) -> bool: - """ 判断队列是否为空 """ + """判断队列是否为空""" return not self.__front def push(self, num: int) -> None: - """ 入队 """ + """入队""" # 尾节点后添加 num node = ListNode(num) # 如果队列为空,则令头、尾节点都指向该节点 @@ -458,7 +459,7 @@ comments: true self.__size += 1 def pop(self) -> int: - """ 出队 """ + """出队""" num = self.peek() # 删除头节点 self.__front = self.__front.next @@ -466,14 +467,14 @@ comments: true return num def peek(self) -> int: - """ 访问队首元素 """ + """访问队首元素""" if self.size() == 0: print("队列为空") return False return self.__front.val def to_list(self) -> list[int]: - """ 转化为列表用于打印 """ + """转化为列表用于打印""" queue = [] temp = self.__front while temp: @@ -1103,27 +1104,28 @@ comments: true ```python title="array_queue.py" class ArrayQueue: - """ 基于环形数组实现的队列 """ + """基于环形数组实现的队列""" + def __init__(self, size: int) -> None: - """ 构造方法 """ + """构造方法""" self.__nums: list[int] = [0] * size # 用于存储队列元素的数组 - self.__front: int = 0 # 队首指针,指向队首元素 - self.__size: int = 0 # 队列长度 + self.__front: int = 0 # 队首指针,指向队首元素 + self.__size: int = 0 # 队列长度 def capacity(self) -> int: - """ 获取队列的容量 """ + """获取队列的容量""" return len(self.__nums) def size(self) -> int: - """ 获取队列的长度 """ + """获取队列的长度""" return self.__size def is_empty(self) -> bool: - """ 判断队列是否为空 """ + """判断队列是否为空""" return self.__size == 0 def push(self, num: int) -> None: - """ 入队 """ + """入队""" assert self.__size < self.capacity(), "队列已满" # 计算尾指针,指向队尾索引 + 1 # 通过取余操作,实现 rear 越过数组尾部后回到头部 @@ -1133,7 +1135,7 @@ comments: true self.__size += 1 def pop(self) -> int: - """ 出队 """ + """出队""" num: int = self.peek() # 队首指针向后移动一位,若越过尾部则返回到数组头部 self.__front = (self.__front + 1) % self.capacity() @@ -1141,12 +1143,12 @@ comments: true return num def peek(self) -> int: - """ 访问队首元素 """ + """访问队首元素""" assert not self.is_empty(), "队列为空" return self.__nums[self.__front] def to_list(self) -> list[int]: - """ 返回列表用于打印 """ + """返回列表用于打印""" res: list[int] = [0] * self.size() j: int = self.__front for i in range(self.size()): diff --git a/chapter_stack_and_queue/stack.md b/chapter_stack_and_queue/stack.md index 8412b2817..48cf52c09 100755 --- a/chapter_stack_and_queue/stack.md +++ b/chapter_stack_and_queue/stack.md @@ -409,42 +409,44 @@ comments: true ```python title="linkedlist_stack.py" class LinkedListStack: - """ 基于链表实现的栈 """ + """基于链表实现的栈""" + def __init__(self): - """ 构造方法 """ + """构造方法""" self.__peek: ListNode | None = None self.__size: int = 0 def size(self) -> int: - """ 获取栈的长度 """ + """获取栈的长度""" return self.__size def is_empty(self) -> bool: - """ 判断栈是否为空 """ + """判断栈是否为空""" return not self.__peek def push(self, val: int) -> None: - """ 入栈 """ + """入栈""" node = ListNode(val) node.next = self.__peek self.__peek = node self.__size += 1 def pop(self) -> int: - """ 出栈 """ + """出栈""" num: int = self.peek() self.__peek = self.__peek.next self.__size -= 1 return num def peek(self) -> int: - """ 访问栈顶元素 """ + """访问栈顶元素""" # 判空处理 - if not self.__peek: return None + if not self.__peek: + return None return self.__peek.val def to_list(self) -> list[int]: - """ 转化为列表用于打印 """ + """转化为列表用于打印""" arr: list[int] = [] node = self.__peek while node: @@ -951,35 +953,36 @@ comments: true ```python title="array_stack.py" class ArrayStack: - """ 基于数组实现的栈 """ + """基于数组实现的栈""" + def __init__(self) -> None: - """ 构造方法 """ + """构造方法""" self.__stack: list[int] = [] def size(self) -> int: - """ 获取栈的长度 """ + """获取栈的长度""" return len(self.__stack) def is_empty(self) -> bool: - """ 判断栈是否为空 """ + """判断栈是否为空""" return self.__stack == [] def push(self, item: int) -> None: - """ 入栈 """ + """入栈""" self.__stack.append(item) def pop(self) -> int: - """ 出栈 """ + """出栈""" assert not self.is_empty(), "栈为空" return self.__stack.pop() def peek(self) -> int: - """ 访问栈顶元素 """ + """访问栈顶元素""" assert not self.is_empty(), "栈为空" return self.__stack[-1] - + def to_list(self) -> list[int]: - """ 返回列表用于打印 """ + """返回列表用于打印""" return self.__stack ``` diff --git a/chapter_tree/avl_tree.md b/chapter_tree/avl_tree.md index 8e26e9d84..6a8d0b5b6 100644 --- a/chapter_tree/avl_tree.md +++ b/chapter_tree/avl_tree.md @@ -195,14 +195,14 @@ G. M. Adelson-Velsky 和 E. M. Landis 在其 1962 年发表的论文 "An algorit ```python title="avl_tree.py" def height(self, node: TreeNode | None) -> int: - """ 获取节点高度 """ + """获取节点高度""" # 空节点高度为 -1 ,叶节点高度为 0 if node is not None: return node.height return -1 def __update_height(self, node: TreeNode | None): - """ 更新节点高度 """ + """更新节点高度""" # 节点高度等于最高子树高度 + 1 node.height = max([self.height(node.left), self.height(node.right)]) + 1 ``` @@ -355,7 +355,7 @@ G. M. Adelson-Velsky 和 E. M. Landis 在其 1962 年发表的论文 "An algorit ```python title="avl_tree.py" def balance_factor(self, node: TreeNode | None) -> int: - """ 获取平衡因子 """ + """获取平衡因子""" # 空节点平衡因子为 0 if node is None: return 0 @@ -518,7 +518,7 @@ AVL 树的独特之处在于「旋转 Rotation」的操作,其可 **在不影 ```python title="avl_tree.py" def __right_rotate(self, node: TreeNode | None) -> TreeNode | None: - """ 右旋操作 """ + """右旋操作""" child = node.left grand_child = child.right # 以 child 为原点,将 node 向右旋转 @@ -702,7 +702,7 @@ AVL 树的独特之处在于「旋转 Rotation」的操作,其可 **在不影 ```python title="avl_tree.py" def __left_rotate(self, node: TreeNode | None) -> TreeNode | None: - """ 左旋操作 """ + """左旋操作""" child = node.right grand_child = child.left # 以 child 为原点,将 node 向左旋转 @@ -941,7 +941,7 @@ AVL 树的独特之处在于「旋转 Rotation」的操作,其可 **在不影 ```python title="avl_tree.py" def __rotate(self, node: TreeNode | None) -> TreeNode | None: - """ 执行旋转操作,使该子树重新恢复平衡 """ + """执行旋转操作,使该子树重新恢复平衡""" # 获取节点 node 的平衡因子 balance_factor = self.balance_factor(node) # 左偏树 @@ -1251,12 +1251,12 @@ AVL 树的独特之处在于「旋转 Rotation」的操作,其可 **在不影 ```python title="avl_tree.py" def insert(self, val) -> TreeNode: - """ 插入节点 """ + """插入节点""" self.__root = self.__insert_helper(self.__root, val) return self.__root def __insert_helper(self, node: TreeNode | None, val: int) -> TreeNode: - """ 递归插入节点(辅助方法)""" + """递归插入节点(辅助方法)""" if node is None: return TreeNode(val) # 1. 查找插入位置,并插入节点 @@ -1576,12 +1576,12 @@ AVL 树的独特之处在于「旋转 Rotation」的操作,其可 **在不影 ```python title="avl_tree.py" def remove(self, val: int) -> TreeNode | None: - """ 删除节点 """ + """删除节点""" self.__root = self.__remove_helper(self.__root, val) - return self.__root + return self.__root def __remove_helper(self, node: TreeNode | None, val: int) -> TreeNode | None: - """ 递归删除节点(辅助方法) """ + """递归删除节点(辅助方法)""" if node is None: return None # 1. 查找节点,并删除之 @@ -1608,7 +1608,7 @@ AVL 树的独特之处在于「旋转 Rotation」的操作,其可 **在不影 return self.__rotate(node) def __get_inorder_next(self, node: TreeNode | None) -> TreeNode | None: - """ 获取中序遍历中的下一个节点(仅适用于 root 有左子节点的情况) """ + """获取中序遍历中的下一个节点(仅适用于 root 有左子节点的情况)""" if node is None: return None # 循环访问左子节点,直到叶节点时为最小节点,跳出 diff --git a/chapter_tree/binary_search_tree.md b/chapter_tree/binary_search_tree.md index 392ace1c2..25211f5f6 100755 --- a/chapter_tree/binary_search_tree.md +++ b/chapter_tree/binary_search_tree.md @@ -81,7 +81,7 @@ comments: true ```python title="binary_search_tree.py" def search(self, num: int) -> TreeNode | None: - """ 查找节点 """ + """查找节点""" cur: TreeNode | None = self.__root # 循环查找,越过叶节点后跳出 while cur is not None: @@ -309,11 +309,11 @@ comments: true ```python title="binary_search_tree.py" def insert(self, num: int) -> TreeNode | None: - """ 插入节点 """ + """插入节点""" # 若树为空,直接提前返回 if self.__root is None: return None - + # 循环查找,越过叶节点后跳出 cur, pre = self.__root, None while cur is not None: @@ -692,7 +692,7 @@ comments: true ```python title="binary_search_tree.py" def remove(self, num: int) -> TreeNode | None: - """ 删除节点 """ + """删除节点""" # 若树为空,直接提前返回 if self.__root is None: return None @@ -733,7 +733,7 @@ comments: true return cur def get_inorder_next(self, root: TreeNode | None) -> TreeNode | None: - """ 获取中序遍历中的下一个节点(仅适用于 root 有左子节点的情况) """ + """获取中序遍历中的下一个节点(仅适用于 root 有左子节点的情况)""" if root is None: return root # 循环访问左子节点,直到叶节点时为最小节点,跳出 diff --git a/chapter_tree/binary_tree_traversal.md b/chapter_tree/binary_tree_traversal.md index 585955226..e35f7b4d1 100755 --- a/chapter_tree/binary_tree_traversal.md +++ b/chapter_tree/binary_tree_traversal.md @@ -70,19 +70,19 @@ comments: true ```python title="binary_tree_bfs.py" def level_order(root: TreeNode | None) -> list[int]: - """ 层序遍历 """ + """层序遍历""" # 初始化队列,加入根节点 queue: deque[TreeNode] = deque() queue.append(root) # 初始化一个列表,用于保存遍历序列 res: list[int] = [] while queue: - node: TreeNode = queue.popleft() # 队列出队 - res.append(node.val) # 保存节点值 + node: TreeNode = queue.popleft() # 队列出队 + res.append(node.val) # 保存节点值 if node.left is not None: - queue.append(node.left) # 左子节点入队 + queue.append(node.left) # 左子节点入队 if node.right is not None: - queue.append(node.right) # 右子节点入队 + queue.append(node.right) # 右子节点入队 return res ``` @@ -338,7 +338,7 @@ comments: true ```python title="binary_tree_dfs.py" def pre_order(root: TreeNode | None) -> None: - """ 前序遍历 """ + """前序遍历""" if root is None: return # 访问优先级:根节点 -> 左子树 -> 右子树 @@ -347,7 +347,7 @@ comments: true pre_order(root=root.right) def in_order(root: TreeNode | None) -> None: - """ 中序遍历 """ + """中序遍历""" if root is None: return # 访问优先级:左子树 -> 根节点 -> 右子树 @@ -356,7 +356,7 @@ comments: true in_order(root=root.right) def post_order(root: TreeNode | None) -> None: - """ 后序遍历 """ + """后序遍历""" if root is None: return # 访问优先级:左子树 -> 右子树 -> 根节点