This commit is contained in:
krahets 2023-04-09 05:12:22 +08:00
parent 01d05cc1f0
commit 37f11aff68
27 changed files with 265 additions and 248 deletions

View File

@ -150,7 +150,7 @@ elementAddr = firtstElementAddr + elementLength * elementIndex
```python title="array.py"
def random_access(nums: list[int]) -> int:
""" 随机访问元素 """
"""随机访问元素"""
# 在区间 [0, len(nums)-1] 中随机抽取一个数字
random_index = random.randint(0, len(nums) - 1)
# 获取并返回随机元素
@ -286,7 +286,7 @@ elementAddr = firtstElementAddr + elementLength * elementIndex
```python title="array.py"
def extend(nums: list[int], enlarge: int) -> list[int]:
""" 扩展数组长度 """
"""扩展数组长度"""
# 初始化一个扩展长度后的数组
res = [0] * (len(nums) + enlarge)
# 将原数组中的所有元素复制到新数组
@ -441,7 +441,7 @@ elementAddr = firtstElementAddr + elementLength * elementIndex
```python title="array.py"
def insert(nums: list[int], num: int, index: int) -> None:
""" 在数组的索引 index 处插入元素 num """
"""在数组的索引 index 处插入元素 num"""
# 把索引 index 以及之后的所有元素向后移动一位
for i in range(len(nums) - 1, index, -1):
nums[i] = nums[i - 1]
@ -561,7 +561,7 @@ elementAddr = firtstElementAddr + elementLength * elementIndex
```python title="array.py"
def remove(nums: list[int], index: int) -> None:
""" 删除索引 index 处元素 """
"""删除索引 index 处元素"""
# 把索引 index 之后的所有元素向前移动一位
for i in range(index, len(nums) - 1):
nums[i] = nums[i + 1]
@ -693,7 +693,7 @@ elementAddr = firtstElementAddr + elementLength * elementIndex
```python title="array.py"
def traverse(nums: list[int]) -> None:
""" 遍历数组 """
"""遍历数组"""
count = 0
# 通过索引遍历数组
for i in range(len(nums)):
@ -849,7 +849,7 @@ elementAddr = firtstElementAddr + elementLength * elementIndex
```python title="array.py"
def find(nums: list[int], target: int) -> int:
""" 在数组中查找指定元素 """
"""在数组中查找指定元素"""
for i in range(len(nums)):
if nums[i] == target:
return i

View File

@ -4,11 +4,11 @@ comments: true
# 4.2.   链表
内存空间是所有程序的公共资源,排除已被占用的内存空间,空闲内存空间通常散落在内存各处。在上一节中,我们提到存储数组的内存空间必须是连续的,而当我们需要申请一个非常大的数组时,空闲内存中可能没有这么大的连续空间。
内存空间是所有程序的公共资源,排除已被占用的内存空间,空闲内存空间通常散落在内存各处。在上一节中,我们提到存储数组的内存空间必须是连续的,而当我们需要申请一个非常大的数组时,空闲内存中可能没有这么大的连续空间。与数组相比,链表更具灵活性,它可以被存储在非连续的内存空间中。
与数组相比,链表更具灵活性,因为它可以存储在非连续的内存空间。「链表 Linked List」是一种线性数据结构其每个元素都是一个节点对象各个节点之间通过指针连接从当前节点通过指针可以访问到下一个节点。由于指针记录了下个节点的内存地址因此无需保证内存地址的连续性从而可以将各个节点分散存储在内存各处。
「链表 Linked List」是一种线性数据结构其每个元素都是一个节点对象各个节点之间通过指针连接从当前节点通过指针可以访问到下一个节点。**由于指针记录了下个节点的内存地址,因此无需保证内存地址的连续性**,从而可以将各个节点分散存储在内存各处。
链表「节点 Node」包含两项数据一是节点「值 Value」二是指向下一节点的「指针 Pointer」或称指向下一节点的「引用 Reference」。
链表「节点 Node」包含两项数据一是节点「值 Value」二是指向下一节点的「指针 Pointer」或称「引用 Reference」。
![链表定义与存储方式](linked_list.assets/linkedlist_definition.png)
@ -374,7 +374,7 @@ comments: true
```python title="linked_list.py"
def insert(n0: ListNode, P: ListNode) -> None:
""" 在链表的节点 n0 之后插入节点 P """
"""在链表的节点 n0 之后插入节点 P"""
n1 = n0.next
P.next = n1
n0.next = P
@ -493,7 +493,7 @@ comments: true
```python title="linked_list.py"
def remove(n0: ListNode) -> None:
""" 删除链表的节点 n0 之后的首个节点 """
"""删除链表的节点 n0 之后的首个节点"""
if not n0.next:
return
# n0 -> P -> n1
@ -632,7 +632,7 @@ comments: true
```python title="linked_list.py"
def access(head: ListNode, index: int) -> ListNode | None:
""" 访问链表中索引为 index 的节点 """
"""访问链表中索引为 index 的节点"""
for _ in range(index):
if not head:
return None
@ -780,7 +780,7 @@ comments: true
```python title="linked_list.py"
def find(head: ListNode, target: int) -> int:
""" 在链表中查找值为 target 的首个节点 """
"""在链表中查找值为 target 的首个节点"""
index = 0
while head:
if head.val == target:

View File

@ -934,35 +934,36 @@ comments: true
```python title="my_list.py"
class MyList:
""" 列表类简易实现 """
"""列表类简易实现"""
def __init__(self):
""" 构造方法 """
self.__capacity: int = 10 # 列表容量
"""构造方法"""
self.__capacity: int = 10 # 列表容量
self.__nums: my_list[int] = [0] * self.__capacity # 数组(存储列表元素)
self.__size: int = 0 # 列表长度(即当前元素数量)
self.__extend_ratio: int = 2 # 每次列表扩容的倍数
self.__size: int = 0 # 列表长度(即当前元素数量)
self.__extend_ratio: int = 2 # 每次列表扩容的倍数
def size(self) -> int:
""" 获取列表长度(即当前元素数量) """
"""获取列表长度(即当前元素数量)"""
return self.__size
def capacity(self) -> int:
""" 获取列表容量 """
"""获取列表容量"""
return self.__capacity
def get(self, index: int) -> int:
""" 访问元素 """
"""访问元素"""
# 索引如果越界则抛出异常,下同
assert index >= 0 and index < self.__size, "索引越界"
return self.__nums[index]
def set(self, num: int, index: int) -> None:
""" 更新元素 """
"""更新元素"""
assert index >= 0 and index < self.__size, "索引越界"
self.__nums[index] = num
def add(self, num: int) -> None:
""" 尾部添加元素 """
"""尾部添加元素"""
# 元素数量超出容量时,触发扩容机制
if self.size() == self.capacity():
self.extend_capacity()
@ -970,7 +971,7 @@ comments: true
self.__size += 1
def insert(self, num: int, index: int) -> None:
""" 中间插入元素 """
"""中间插入元素"""
assert index >= 0 and index < self.__size, "索引越界"
# 元素数量超出容量时,触发扩容机制
if self.__size == self.capacity():
@ -983,7 +984,7 @@ comments: true
self.__size += 1
def remove(self, index: int) -> int:
""" 删除元素 """
"""删除元素"""
assert index >= 0 and index < self.__size, "索引越界"
num = self.__nums[index]
# 索引 i 之后的元素都向前移动一位
@ -995,15 +996,15 @@ comments: true
return num
def extend_capacity(self) -> None:
""" 列表扩容 """
"""列表扩容"""
# 新建一个长度为 self.__size 的数组,并将原数组拷贝到新数组
self.__nums = self.__nums + [0] * self.capacity() * (self.__extend_ratio - 1)
# 更新列表容量
self.__capacity = len(self.__nums)
def to_array(self) -> list[int]:
""" 返回有效长度的列表 """
return self.__nums[:self.__size]
"""返回有效长度的列表"""
return self.__nums[: self.__size]
```
=== "Go"

View File

@ -626,7 +626,7 @@ $$
```python title="space_complexity.py"
def constant(n: int) -> None:
""" 常数阶 """
"""常数阶"""
# 常量、变量、对象占用 O(1) 空间
a: int = 0
nums: list[int] = [0] * 10000
@ -831,7 +831,7 @@ $$
```python title="space_complexity.py"
def linear(n: int) -> None:
""" 线性阶 """
"""线性阶"""
# 长度为 n 的列表占用 O(n) 空间
nums: list[int] = [0] * n
# 长度为 n 的哈希表占用 O(n) 空间
@ -998,9 +998,10 @@ $$
```python title="space_complexity.py"
def linear_recur(n: int) -> None:
""" 线性阶(递归实现) """
"""线性阶(递归实现)"""
print("递归 n =", n)
if n == 1: return
if n == 1:
return
linear_recur(n - 1)
```
@ -1129,7 +1130,7 @@ $$
```python title="space_complexity.py"
def quadratic(n: int) -> None:
""" 平方阶 """
"""平方阶"""
# 二维列表占用 O(n^2) 空间
num_matrix: list[list[int]] = [[0] * n for _ in range(n)]
```
@ -1277,8 +1278,9 @@ $$
```python title="space_complexity.py"
def quadratic_recur(n: int) -> int:
""" 平方阶(递归实现) """
if n <= 0: return 0
"""平方阶(递归实现)"""
if n <= 0:
return 0
# 数组 nums 长度为 n, n-1, ..., 2, 1
nums: list[int] = [0] * n
return quadratic_recur(n - 1)
@ -1407,8 +1409,9 @@ $$
```python title="space_complexity.py"
def build_tree(n: int) -> TreeNode | None:
""" 指数阶(建立满二叉树) """
if n == 0: return None
"""指数阶(建立满二叉树)"""
if n == 0:
return None
root = TreeNode(0)
root.left = build_tree(n - 1)
root.right = build_tree(n - 1)

View File

@ -66,7 +66,7 @@ comments: true
```python title="leetcode_two_sum.py"
def two_sum_brute_force(nums: list[int], target: int) -> list[int]:
""" 方法一:暴力枚举 """
"""方法一:暴力枚举"""
# 两层循环,时间复杂度 O(n^2)
for i in range(len(nums) - 1):
for j in range(i + 1, len(nums)):
@ -243,7 +243,7 @@ comments: true
```python title="leetcode_two_sum.py"
def two_sum_hash_table(nums: list[int], target: int) -> list[int]:
""" 方法二:辅助哈希表 """
"""方法二:辅助哈希表"""
# 辅助哈希表,空间复杂度 O(n)
dic = {}
# 单层循环,时间复杂度 O(n)

View File

@ -820,7 +820,7 @@ $$
```python title="time_complexity.py"
def constant(n: int) -> int:
""" 常数阶 """
"""常数阶"""
count: int = 0
size: int = 100000
for _ in range(size):
@ -948,7 +948,7 @@ $$
```python title="time_complexity.py"
def linear(n: int) -> int:
""" 线性阶 """
"""线性阶"""
count: int = 0
for _ in range(n):
count += 1
@ -1074,7 +1074,7 @@ $$
```python title="time_complexity.py"
def array_traversal(nums: list[int]) -> int:
""" 线性阶(遍历数组)"""
"""线性阶(遍历数组)"""
count: int = 0
# 循环次数与数组长度成正比
for num in nums:
@ -1214,7 +1214,7 @@ $$
```python title="time_complexity.py"
def quadratic(n: int) -> int:
""" 平方阶 """
"""平方阶"""
count: int = 0
# 循环次数与数组长度成平方关系
for i in range(n):
@ -1390,7 +1390,7 @@ $$
```python title="time_complexity.py"
def bubble_sort(nums: list[int]) -> int:
""" 平方阶(冒泡排序)"""
"""平方阶(冒泡排序)"""
count: int = 0 # 计数器
# 外循环:待排序元素数量为 n-1, n-2, ..., 1
for i in range(len(nums) - 1, 0, -1):
@ -1603,7 +1603,7 @@ $$
```python title="time_complexity.py"
def exponential(n: int) -> int:
""" 指数阶(循环实现)"""
"""指数阶(循环实现)"""
count: int = 0
base: int = 1
# cell 每轮一分为二,形成数列 1, 2, 4, 8, ..., 2^(n-1)
@ -1768,8 +1768,9 @@ $$
```python title="time_complexity.py"
def exp_recur(n: int) -> int:
""" 指数阶(递归实现)"""
if n == 1: return 1
"""指数阶(递归实现)"""
if n == 1:
return 1
return exp_recur(n - 1) + exp_recur(n - 1) + 1
```
@ -1884,7 +1885,7 @@ $$
```python title="time_complexity.py"
def logarithmic(n: float) -> int:
""" 对数阶(循环实现)"""
"""对数阶(循环实现)"""
count: int = 0
while n > 1:
n = n / 2
@ -2017,8 +2018,9 @@ $$
```python title="time_complexity.py"
def log_recur(n: float) -> int:
""" 对数阶(递归实现)"""
if n <= 1: return 0
"""对数阶(递归实现)"""
if n <= 1:
return 0
return log_recur(n / 2) + 1
```
@ -2133,10 +2135,10 @@ $$
```python title="time_complexity.py"
def linear_log_recur(n: float) -> int:
""" 线性对数阶 """
if n <= 1: return 1
count: int = linear_log_recur(n // 2) + \
linear_log_recur(n // 2)
"""线性对数阶"""
if n <= 1:
return 1
count: int = linear_log_recur(n // 2) + linear_log_recur(n // 2)
for _ in range(n):
count += 1
return count
@ -2290,8 +2292,9 @@ $$
```python title="time_complexity.py"
def factorial_recur(n: int) -> int:
""" 阶乘阶(递归实现)"""
if n == 0: return 1
"""阶乘阶(递归实现)"""
if n == 0:
return 1
count: int = 0
# 从 1 个分裂出 n 个
for _ in range(n):
@ -2480,7 +2483,7 @@ $$
```python title="worst_best_time_complexity.py"
def random_numbers(n: int) -> list[int]:
""" 生成一个数组,元素为: 1, 2, ..., n ,顺序被打乱 """
"""生成一个数组,元素为: 1, 2, ..., n ,顺序被打乱"""
# 生成数组 nums =: 1, 2, 3, ..., n
nums: list[int] = [i for i in range(1, n + 1)]
# 随机打乱数组元素
@ -2488,7 +2491,7 @@ $$
return nums
def find_one(nums: list[int]) -> int:
""" 查找数组 nums 中数字 1 所在索引 """
"""查找数组 nums 中数字 1 所在索引"""
for i in range(len(nums)):
# 当元素 1 在数组头部时,达到最佳时间复杂度 O(1)
# 当元素 1 在数组尾部时,达到最差时间复杂度 O(n)

View File

@ -214,14 +214,15 @@ comments: true
```python title="graph_adjacency_matrix.py"
class GraphAdjMat:
""" 基于邻接矩阵实现的无向图类 """
"""基于邻接矩阵实现的无向图类"""
# 顶点列表,元素代表“顶点值”,索引代表“顶点索引”
vertices: list[int] = []
# 邻接矩阵,行列索引对应“顶点索引”
adj_mat: list[list[int]] = []
def __init__(self, vertices: list[int], edges: list[list[int]]) -> None:
""" 构造方法 """
"""构造方法"""
self.vertices: list[int] = []
self.adj_mat: list[list[int]] = []
# 添加顶点
@ -233,11 +234,11 @@ comments: true
self.add_edge(e[0], e[1])
def size(self) -> int:
""" 获取顶点数量 """
"""获取顶点数量"""
return len(self.vertices)
def add_vertex(self, val: int) -> None:
""" 添加顶点 """
"""添加顶点"""
n = self.size()
# 向顶点列表中添加新顶点的值
self.vertices.append(val)
@ -249,7 +250,7 @@ comments: true
row.append(0)
def remove_vertex(self, index: int) -> None:
""" 删除顶点 """
"""删除顶点"""
if index >= self.size():
raise IndexError()
# 在顶点列表中移除索引 index 的顶点
@ -261,7 +262,7 @@ comments: true
row.pop(index)
def add_edge(self, i: int, j: int) -> None:
""" 添加边 """
"""添加边"""
# 参数 i, j 对应 vertices 元素索引
# 索引越界与相等处理
if i < 0 or j < 0 or i >= self.size() or j >= self.size() or i == j:
@ -271,7 +272,7 @@ comments: true
self.adj_mat[j][i] = 1
def remove_edge(self, i: int, j: int) -> None:
""" 删除边 """
"""删除边"""
# 参数 i, j 对应 vertices 元素索引
# 索引越界与相等处理
if i < 0 or j < 0 or i >= self.size() or j >= self.size() or i == j:
@ -280,7 +281,7 @@ comments: true
self.adj_mat[j][i] = 0
def print(self) -> None:
""" 打印邻接矩阵 """
"""打印邻接矩阵"""
print("顶点列表 =", self.vertices)
print("邻接矩阵 =")
print_matrix(self.adj_mat)
@ -966,9 +967,10 @@ comments: true
```python title="graph_adjacency_list.py"
class GraphAdjList:
""" 基于邻接表实现的无向图类 """
"""基于邻接表实现的无向图类"""
def __init__(self, edges: list[list[Vertex]]) -> None:
""" 构造方法 """
"""构造方法"""
# 邻接表key: 顶点value该顶点的所有邻接顶点
self.adj_list = dict[Vertex, Vertex]()
# 添加所有顶点和边
@ -978,11 +980,11 @@ comments: true
self.add_edge(edge[0], edge[1])
def size(self) -> int:
""" 获取顶点数量 """
"""获取顶点数量"""
return len(self.adj_list)
def add_edge(self, vet1: Vertex, vet2: Vertex) -> None:
""" 添加边 """
"""添加边"""
if vet1 not in self.adj_list or vet2 not in self.adj_list or vet1 == vet2:
raise ValueError
# 添加边 vet1 - vet2
@ -990,7 +992,7 @@ comments: true
self.adj_list[vet2].append(vet1)
def remove_edge(self, vet1: Vertex, vet2: Vertex) -> None:
""" 删除边 """
"""删除边"""
if vet1 not in self.adj_list or vet2 not in self.adj_list or vet1 == vet2:
raise ValueError
# 删除边 vet1 - vet2
@ -998,14 +1000,14 @@ comments: true
self.adj_list[vet2].remove(vet1)
def add_vertex(self, vet: Vertex) -> None:
""" 添加顶点 """
"""添加顶点"""
if vet in self.adj_list:
return
# 在邻接表中添加一个新链表
self.adj_list[vet] = []
def remove_vertex(self, vet: Vertex) -> None:
""" 删除顶点 """
"""删除顶点"""
if vet not in self.adj_list:
raise ValueError
# 在邻接表中删除顶点 vet 对应的链表
@ -1016,7 +1018,7 @@ comments: true
self.adj_list[vertex].remove(vet)
def print(self) -> None:
""" 打印邻接表 """
"""打印邻接表"""
print("邻接表 =")
for vertex in self.adj_list:
tmp = [v.val for v in self.adj_list[vertex]]

View File

@ -94,7 +94,7 @@ BFS 通常借助「队列」来实现。队列具有“先入先出”的性质
```python title="graph_bfs.py"
def graph_bfs(graph: GraphAdjList, start_vet: Vertex) -> list[Vertex]:
""" 广度优先遍历 BFS """
"""广度优先遍历 BFS"""
# 使用邻接表来表示图,以便获取指定顶点的所有邻接顶点
# 顶点遍历序列
res = []
@ -105,13 +105,13 @@ BFS 通常借助「队列」来实现。队列具有“先入先出”的性质
# 以顶点 vet 为起点,循环直至访问完所有顶点
while len(que) > 0:
vet = que.popleft() # 队首顶点出队
res.append(vet) # 记录访问顶点
res.append(vet) # 记录访问顶点
# 遍历该顶点的所有邻接顶点
for adj_vet in graph.adj_list[vet]:
if adj_vet in visited:
continue # 跳过已被访问过的顶点
continue # 跳过已被访问过的顶点
que.append(adj_vet) # 只入队未访问的顶点
visited.add(adj_vet) # 标记该顶点已被访问
visited.add(adj_vet) # 标记该顶点已被访问
# 返回顶点遍历序列
return res
```
@ -379,18 +379,18 @@ BFS 通常借助「队列」来实现。队列具有“先入先出”的性质
```python title="graph_dfs.py"
def dfs(graph: GraphAdjList, visited: set[Vertex], res: list[Vertex], vet: Vertex):
""" 深度优先遍历 DFS 辅助函数 """
res.append(vet) # 记录访问顶点
visited.add(vet) # 标记该顶点已被访问
"""深度优先遍历 DFS 辅助函数"""
res.append(vet) # 记录访问顶点
visited.add(vet) # 标记该顶点已被访问
# 遍历该顶点的所有邻接顶点
for adjVet in graph.adj_list[vet]:
if adjVet in visited:
continue # 跳过已被访问过的顶点
continue # 跳过已被访问过的顶点
# 递归访问邻接顶点
dfs(graph, visited, res, adjVet)
def graph_dfs(graph: GraphAdjList, start_vet: Vertex) -> list[Vertex]:
""" 深度优先遍历 DFS """
"""深度优先遍历 DFS"""
# 顶点遍历序列
res = []
# 哈希表,用于记录已被访问过的顶点

View File

@ -607,25 +607,27 @@ $$
```python title="array_hash_map.py"
class Entry:
""" 键值对 int->String """
"""键值对 int->String"""
def __init__(self, key: int, val: str):
self.key = key
self.val = val
class ArrayHashMap:
""" 基于数组简易实现的哈希表 """
"""基于数组简易实现的哈希表"""
def __init__(self):
""" 构造方法 """
"""构造方法"""
# 初始化数组,包含 100 个桶
self.buckets: list[Entry | None] = [None] * 100
def hash_func(self, key: int) -> int:
""" 哈希函数 """
"""哈希函数"""
index: int = key % 100
return index
def get(self, key: int) -> str:
""" 查询操作 """
"""查询操作"""
index: int = self.hash_func(key)
pair: Entry = self.buckets[index]
if pair is None:
@ -633,19 +635,19 @@ $$
return pair.val
def put(self, key: int, val: str) -> None:
""" 添加操作 """
"""添加操作"""
pair = Entry(key, val)
index: int = self.hash_func(key)
self.buckets[index] = pair
def remove(self, key: int) -> None:
""" 删除操作 """
"""删除操作"""
index: int = self.hash_func(key)
# 置为 None ,代表删除
self.buckets[index] = None
def entry_set(self) -> list[Entry]:
""" 获取所有键值对 """
"""获取所有键值对"""
result: list[Entry] = []
for pair in self.buckets:
if pair is not None:
@ -653,7 +655,7 @@ $$
return result
def key_set(self) -> list[int]:
""" 获取所有键 """
"""获取所有键"""
result: list[int] = []
for pair in self.buckets:
if pair is not None:
@ -661,7 +663,7 @@ $$
return result
def value_set(self) -> list[str]:
""" 获取所有值 """
"""获取所有值"""
result: list[str] = []
for pair in self.buckets:
if pair is not None:
@ -669,7 +671,7 @@ $$
return result
def print(self) -> None:
""" 打印哈希表 """
"""打印哈希表"""
for pair in self.buckets:
if pair is not None:
print(pair.key, "->", pair.val)

View File

@ -50,7 +50,7 @@ comments: true
```python title="my_heap.py"
def __init__(self, nums: list[int]):
""" 构造方法 """
"""构造方法"""
# 将列表元素原封不动添加进堆
self.max_heap = nums
# 堆化除叶节点以外的其他所有节点

View File

@ -366,15 +366,15 @@ comments: true
```python title="my_heap.py"
def left(self, i: int) -> int:
""" 获取左子节点索引 """
"""获取左子节点索引"""
return 2 * i + 1
def right(self, i: int) -> int:
""" 获取右子节点索引 """
"""获取右子节点索引"""
return 2 * i + 2
def parent(self, i: int) -> int:
""" 获取父节点索引 """
"""获取父节点索引"""
return (i - 1) // 2 # 向下整除
```
@ -533,7 +533,7 @@ comments: true
```python title="my_heap.py"
def peek(self) -> int:
""" 访问堆顶元素 """
"""访问堆顶元素"""
return self.max_heap[0]
```
@ -682,14 +682,14 @@ comments: true
```python title="my_heap.py"
def push(self, val: int):
""" 元素入堆 """
"""元素入堆"""
# 添加节点
self.max_heap.append(val)
# 从底至顶堆化
self.sift_up(self.size() - 1)
def sift_up(self, i: int):
""" 从节点 i 开始,从底至顶堆化 """
"""从节点 i 开始,从底至顶堆化"""
while True:
# 获取节点 i 的父节点
p = self.parent(i)
@ -996,7 +996,7 @@ comments: true
```python title="my_heap.py"
def pop(self) -> int:
""" 元素出堆 """
"""元素出堆"""
# 判空处理
assert not self.is_empty()
# 交换根节点与最右叶节点(即交换首元素与尾元素)
@ -1009,7 +1009,7 @@ comments: true
return val
def sift_down(self, i: int):
""" 从节点 i 开始,从顶至底堆化 """
"""从节点 i 开始,从顶至底堆化"""
while True:
# 判断节点 i, l, r 中值最大的节点,记为 ma
l, r, ma = self.left(i), self.right(i), i

View File

@ -99,18 +99,18 @@ $$
```python title="binary_search.py"
def binary_search(nums: list[int], target: int) -> int:
""" 二分查找(双闭区间) """
"""二分查找(双闭区间)"""
# 初始化双闭区间 [0, n-1] ,即 i, j 分别指向数组首元素、尾元素
i, j = 0, len(nums) - 1
while i <= j:
m = (i + j) // 2 # 计算中点索引 m
if nums[m] < target: # 此情况说明 target 在区间 [m+1, j]
m = (i + j) // 2 # 计算中点索引 m
if nums[m] < target: # 此情况说明 target 在区间 [m+1, j]
i = m + 1
elif nums[m] > target: # 此情况说明 target 在区间 [i, m-1] 中
j = m - 1
else:
return m # 找到目标元素,返回其索引
return -1 # 未找到目标元素,返回 -1
return m # 找到目标元素,返回其索引
return -1 # 未找到目标元素,返回 -1
```
=== "Go"
@ -310,19 +310,19 @@ $$
```python title="binary_search.py"
def binary_search1(nums: list[int], target: int) -> int:
""" 二分查找(左闭右开) """
"""二分查找(左闭右开)"""
# 初始化左闭右开 [0, n) ,即 i, j 分别指向数组首元素、尾元素+1
i, j = 0, len(nums)
# 循环,当搜索区间为空时跳出(当 i = j 时为空)
while i < j:
m = (i + j) // 2 # 计算中点索引 m
if nums[m] < target: # 此情况说明 target 在区间 [m+1, j)
m = (i + j) // 2 # 计算中点索引 m
if nums[m] < target: # 此情况说明 target 在区间 [m+1, j)
i = m + 1
elif nums[m] > target: # 此情况说明 target 在区间 [i, m) 中
j = m
else: # 找到目标元素,返回其索引
else: # 找到目标元素,返回其索引
return m
return -1 # 未找到目标元素,返回 -1
return -1 # 未找到目标元素,返回 -1
```
=== "Go"

View File

@ -46,7 +46,7 @@ comments: true
```python title="hashing_search.py"
def hashing_search_array(mapp: dict[int, int], target: int) -> int:
""" 哈希查找(数组) """
"""哈希查找(数组)"""
# 哈希表的 key: 目标元素value: 索引
# 若哈希表中无此 key ,返回 -1
return mapp.get(target, -1)
@ -163,11 +163,8 @@ comments: true
=== "Python"
```python title="hashing_search.py"
def hashing_search_linkedlist(mapp: dict[int, ListNode], target: int) -> ListNode | None:
""" 哈希查找(链表) """
# 哈希表的 key: 目标元素value: 节点对象
# 若哈希表中无此 key ,返回 None
return mapp.get(target, None)
def hashing_search_linkedlist(
mapp: dict[int, ListNode], target: int
```
=== "Go"

View File

@ -50,12 +50,12 @@ comments: true
```python title="linear_search.py"
def linear_search_array(nums: list[int], target: int) -> int:
""" 线性查找(数组) """
"""线性查找(数组)"""
# 遍历数组
for i in range(len(nums)):
if nums[i] == target: # 找到目标元素,返回其索引
return i
return -1 # 未找到目标元素,返回 -1
return -1 # 未找到目标元素,返回 -1
```
=== "Go"
@ -207,13 +207,13 @@ comments: true
```python title="linear_search.py"
def linear_search_linkedlist(head: ListNode, target: int) -> ListNode | None:
""" 线性查找(链表) """
"""线性查找(链表)"""
# 遍历链表
while head:
if head.val == target: # 找到目标节点,返回之
if head.val == target: # 找到目标节点,返回之
return head
head = head.next
return None # 未找到目标节点,返回 None
return None # 未找到目标节点,返回 None
```
=== "Go"

View File

@ -90,7 +90,7 @@ comments: true
```python title="bubble_sort.py"
def bubble_sort(nums: list[int]) -> None:
""" 冒泡排序 """
"""冒泡排序"""
n: int = len(nums)
# 外循环:待排序元素数量为 n-1, n-2, ..., 1
for i in range(n - 1, 0, -1):
@ -294,7 +294,7 @@ comments: true
```python title="bubble_sort.py"
def bubble_sort_with_flag(nums: list[int]) -> None:
""" 冒泡排序(标志优化) """
"""冒泡排序(标志优化)"""
n: int = len(nums)
# 外循环:待排序元素数量为 n-1, n-2, ..., 1
for i in range(n - 1, 0, -1):
@ -306,7 +306,7 @@ comments: true
nums[j], nums[j + 1] = nums[j + 1], nums[j]
flag = True # 记录交换元素
if not flag:
break # 此轮冒泡未交换任何元素,直接跳出
break # 此轮冒泡未交换任何元素,直接跳出
```
=== "Go"

View File

@ -87,6 +87,7 @@ comments: true
```python title="bucket_sort.py"
def bucket_sort(nums: list[float]) -> None:
"""桶排序"""
# 初始化 k = n/2 个桶,预期向每个桶分配 2 个元素
k = len(nums) // 2
buckets = [[] for _ in range(k)]

View File

@ -76,7 +76,7 @@ comments: true
```python title="counting_sort.py"
def counting_sort_naive(nums: list[int]) -> None:
""" 计数排序 """
"""计数排序"""
# 简单实现,无法用于排序对象
# 1. 统计数组最大元素 m
m = 0
@ -346,7 +346,7 @@ $$
```python title="counting_sort.py"
def counting_sort(nums: list[int]) -> None:
""" 计数排序 """
"""计数排序"""
# 完整实现,可排序对象,并且是稳定排序
# 1. 统计数组最大元素 m
m = max(nums)

View File

@ -66,8 +66,8 @@ comments: true
```python title="insertion_sort.py"
def insertion_sort(nums: list[int]) -> None:
""" 插入排序 """
# 外循环base = nums[1], nums[2], ..., nums[n-1]
"""插入排序"""
# 外循环base = nums[1], nums[2], ..., nums[n-1]
for i in range(1, len(nums)):
base: int = nums[i]
j: int = i - 1
@ -75,7 +75,7 @@ comments: true
while j >= 0 and nums[j] > base:
nums[j + 1] = nums[j] # 1. 将 nums[j] 向右移动一位
j -= 1
nums[j + 1] = base # 2. 将 base 赋值到正确位置
nums[j + 1] = base # 2. 将 base 赋值到正确位置
```
=== "Go"

View File

@ -147,11 +147,11 @@ comments: true
```python title="merge_sort.py"
def merge(nums: list[int], left: int, mid: int, right: int) -> None:
""" 合并左子数组和右子数组 """
"""合并左子数组和右子数组"""
# 左子数组区间 [left, mid]
# 右子数组区间 [mid + 1, right]
# 初始化辅助数组
tmp: list[int] = list(nums[left:right + 1])
tmp: list[int] = list(nums[left : right + 1])
# 左子数组的起始索引和结束索引
left_start: int = 0
left_end: int = mid - left
@ -177,13 +177,13 @@ comments: true
j += 1
def merge_sort(nums: list[int], left: int, right: int) -> None:
""" 归并排序 """
"""归并排序"""
# 终止条件
if left >= right:
return # 当子数组长度为 1 时终止递归
return # 当子数组长度为 1 时终止递归
# 划分阶段
mid: int = (left + right) // 2 # 计算中点
merge_sort(nums, left, mid) # 递归左子数组
mid: int = (left + right) // 2 # 计算中点
merge_sort(nums, left, mid) # 递归左子数组
merge_sort(nums, mid + 1, right) # 递归右子数组
# 合并阶段
merge(nums, left, mid, right)

View File

@ -101,7 +101,7 @@ comments: true
```python title="quick_sort.py"
def partition(self, nums: list[int], left: int, right: int) -> int:
""" 哨兵划分 """
"""哨兵划分"""
# 以 nums[left] 作为基准数
i, j = left, right
while i < j:
@ -334,7 +334,7 @@ comments: true
```python title="quick_sort.py"
def quick_sort(self, nums: list[int], left: int, right: int) -> None:
""" 快速排序 """
"""快速排序"""
# 子数组长度为 1 时终止递归
if left >= right:
return
@ -549,7 +549,7 @@ comments: true
```python title="quick_sort.py"
def median_three(self, nums: list[int], left: int, mid: int, right: int) -> int:
""" 选取三个元素的中位数 """
"""选取三个元素的中位数"""
# 此处使用异或运算来简化代码
# 异或规则为 0 ^ 0 = 1 ^ 1 = 0, 0 ^ 1 = 1 ^ 0 = 1
if (nums[left] < nums[mid]) ^ (nums[left] < nums[right]):
@ -559,7 +559,7 @@ comments: true
return right
def partition(self, nums: list[int], left: int, right: int) -> int:
""" 哨兵划分(三数取中值) """
"""哨兵划分(三数取中值)"""
# 以 nums[left] 作为基准数
med: int = self.median_three(nums, left, (left + right) // 2, right)
# 将中位数交换至数组最左端
@ -842,7 +842,7 @@ comments: true
```python title="quick_sort.py"
def quick_sort(self, nums: list[int], left: int, right: int) -> None:
""" 快速排序(尾递归优化) """
"""快速排序(尾递归优化)"""
# 子数组长度为 1 时终止
while left < right:
# 哨兵划分操作
@ -850,10 +850,10 @@ comments: true
# 对两个子数组中较短的那个执行快排
if pivot - left < right - pivot:
self.quick_sort(nums, left, pivot - 1) # 递归排序左子数组
left = pivot + 1 # 剩余待排序区间为 [pivot + 1, right]
left = pivot + 1 # 剩余待排序区间为 [pivot + 1, right]
else:
self.quick_sort(nums, pivot + 1, right) # 递归排序右子数组
right = pivot - 1 # 剩余待排序区间为 [left, pivot - 1]
right = pivot - 1 # 剩余待排序区间为 [left, pivot - 1]
```
=== "Go"

View File

@ -136,19 +136,19 @@ $$
```python title="radix_sort.py"
def digit(num: int, exp: int) -> int:
""" 获取元素 num 的第 k 位,其中 exp = 10^(k-1) """
"""获取元素 num 的第 k 位,其中 exp = 10^(k-1)"""
# 传入 exp 而非 k 可以避免在此重复执行昂贵的次方计算
return (num // exp) % 10
def counting_sort_digit(nums: list[int], exp: int) -> None:
""" 计数排序(根据 nums 第 k 位排序) """
"""计数排序(根据 nums 第 k 位排序)"""
# 十进制的位范围为 0~9 ,因此需要长度为 10 的桶
counter = [0] * 10
n = len(nums)
# 统计 0~9 各数字的出现次数
for i in range(n):
d = digit(nums[i], exp) # 获取 nums[i] 第 k 位,记为 d
counter[d] += 1 # 统计数字 d 的出现次数
counter[d] += 1 # 统计数字 d 的出现次数
# 求前缀和,将“出现个数”转换为“数组索引”
for i in range(1, 10):
counter[i] += counter[i - 1]
@ -157,14 +157,14 @@ $$
for i in range(n - 1, -1, -1):
d = digit(nums[i], exp)
j = counter[d] - 1 # 获取 d 在数组中的索引 j
res[j] = nums[i] # 将当前元素填入索引 j
counter[d] -= 1 # 将 d 的数量减 1
res[j] = nums[i] # 将当前元素填入索引 j
counter[d] -= 1 # 将 d 的数量减 1
# 使用结果覆盖原数组 nums
for i in range(n):
nums[i] = res[i]
def radix_sort(nums: list[int]) -> None:
""" 基数排序 """
"""基数排序"""
# 获取数组的最大元素,用于判断最大位数
m = max(nums)
# 按照从低位到高位的顺序遍历

View File

@ -591,31 +591,33 @@ comments: true
```python title="linkedlist_deque.py"
class ListNode:
""" 双向链表节点 """
"""双向链表节点"""
def __init__(self, val: int) -> None:
""" 构造方法 """
"""构造方法"""
self.val: int = val
self.next: ListNode | None = None # 后继节点引用(指针)
self.prev: ListNode | None = None # 前驱节点引用(指针)
class LinkedListDeque:
""" 基于双向链表实现的双向队列 """
"""基于双向链表实现的双向队列"""
def __init__(self) -> None:
""" 构造方法 """
self.front: ListNode | None = None # 头节点 front
"""构造方法"""
self.front: ListNode | None = None # 头节点 front
self.rear: ListNode | None = None # 尾节点 rear
self.__size: int = 0 # 双向队列的长度
self.__size: int = 0 # 双向队列的长度
def size(self) -> int:
""" 获取双向队列的长度 """
"""获取双向队列的长度"""
return self.__size
def is_empty(self) -> bool:
""" 判断双向队列是否为空 """
"""判断双向队列是否为空"""
return self.size() == 0
def push(self, num: int, is_front: bool) -> None:
""" 入队操作 """
"""入队操作"""
node = ListNode(num)
# 若链表为空,则令 front, rear 都指向 node
if self.is_empty():
@ -635,15 +637,15 @@ comments: true
self.__size += 1 # 更新队列长度
def push_first(self, num: int) -> None:
""" 队首入队 """
"""队首入队"""
self.push(num, True)
def push_last(self, num: int) -> None:
""" 队尾入队 """
"""队尾入队"""
self.push(num, False)
def pop(self, is_front: bool) -> int:
""" 出队操作 """
"""出队操作"""
# 若队列为空,直接返回 None
if self.is_empty():
return None
@ -669,23 +671,23 @@ comments: true
return val
def pop_first(self) -> int:
""" 队首出队 """
"""队首出队"""
return self.pop(True)
def pop_last(self) -> int:
""" 队尾出队 """
"""队尾出队"""
return self.pop(False)
def peek_first(self) -> int:
""" 访问队首元素 """
"""访问队首元素"""
return None if self.is_empty() else self.front.val
def peek_last(self) -> int:
""" 访问队尾元素 """
"""访问队尾元素"""
return None if self.is_empty() else self.rear.val
def to_array(self) -> list[int]:
""" 返回数组用于打印 """
"""返回数组用于打印"""
node: ListNode | None = self.front
res: list[int] = [0] * self.size()
for i in range(self.size()):
@ -1583,34 +1585,35 @@ comments: true
```python title="array_deque.py"
class ArrayDeque:
""" 基于环形数组实现的双向队列 """
"""基于环形数组实现的双向队列"""
def __init__(self, capacity: int) -> None:
""" 构造方法 """
"""构造方法"""
self.__nums: list[int] = [0] * capacity
self.__front: int = 0
self.__size: int = 0
def capacity(self) -> int:
""" 获取双向队列的容量 """
"""获取双向队列的容量"""
return len(self.__nums)
def size(self) -> int:
""" 获取双向队列的长度 """
"""获取双向队列的长度"""
return self.__size
def is_empty(self) -> bool:
""" 判断双向队列是否为空 """
"""判断双向队列是否为空"""
return self.__size == 0
def index(self, i: int) -> int:
""" 计算环形数组索引 """
"""计算环形数组索引"""
# 通过取余操作实现数组首尾相连
# 当 i 越过数组尾部后,回到头部
# 当 i 越过数组头部后,回到尾部
return (i + self.capacity()) % self.capacity()
def push_first(self, num: int) -> None:
""" 队首入队 """
"""队首入队"""
if self.__size == self.capacity():
print("双向队列已满")
return
@ -1622,7 +1625,7 @@ comments: true
self.__size += 1
def push_last(self, num: int) -> None:
""" 队尾入队 """
"""队尾入队"""
if self.__size == self.capacity():
print("双向队列已满")
return
@ -1633,7 +1636,7 @@ comments: true
self.__size += 1
def pop_first(self) -> int:
""" 队首出队 """
"""队首出队"""
num = self.peek_first()
# 队首指针向后移动一位
self.__front = self.index(self.__front + 1)
@ -1641,25 +1644,25 @@ comments: true
return num
def pop_last(self) -> int:
""" 队尾出队 """
"""队尾出队"""
num = self.peek_last()
self.__size -= 1
return num
def peek_first(self) -> int:
""" 访问队首元素 """
"""访问队首元素"""
assert not self.is_empty(), "双向队列为空"
return self.__nums[self.__front]
def peek_last(self) -> int:
""" 访问队尾元素 """
"""访问队尾元素"""
assert not self.is_empty(), "双向队列为空"
# 计算尾元素索引
last = self.index(self.__front + self.__size - 1)
return self.__nums[last]
def to_array(self) -> list[int]:
""" 返回数组用于打印 """
"""返回数组用于打印"""
# 仅转换有效长度范围内的列表元素
res = []
for i in range(self.__size):

View File

@ -428,23 +428,24 @@ comments: true
```python title="linkedlist_queue.py"
class LinkedListQueue:
""" 基于链表实现的队列 """
"""基于链表实现的队列"""
def __init__(self):
""" 构造方法 """
"""构造方法"""
self.__front: ListNode | None = None # 头节点 front
self.__rear: ListNode | None = None # 尾节点 rear
self.__rear: ListNode | None = None # 尾节点 rear
self.__size: int = 0
def size(self) -> int:
""" 获取队列的长度 """
"""获取队列的长度"""
return self.__size
def is_empty(self) -> bool:
""" 判断队列是否为空 """
"""判断队列是否为空"""
return not self.__front
def push(self, num: int) -> None:
""" 入队 """
"""入队"""
# 尾节点后添加 num
node = ListNode(num)
# 如果队列为空,则令头、尾节点都指向该节点
@ -458,7 +459,7 @@ comments: true
self.__size += 1
def pop(self) -> int:
""" 出队 """
"""出队"""
num = self.peek()
# 删除头节点
self.__front = self.__front.next
@ -466,14 +467,14 @@ comments: true
return num
def peek(self) -> int:
""" 访问队首元素 """
"""访问队首元素"""
if self.size() == 0:
print("队列为空")
return False
return self.__front.val
def to_list(self) -> list[int]:
""" 转化为列表用于打印 """
"""转化为列表用于打印"""
queue = []
temp = self.__front
while temp:
@ -1103,27 +1104,28 @@ comments: true
```python title="array_queue.py"
class ArrayQueue:
""" 基于环形数组实现的队列 """
"""基于环形数组实现的队列"""
def __init__(self, size: int) -> None:
""" 构造方法 """
"""构造方法"""
self.__nums: list[int] = [0] * size # 用于存储队列元素的数组
self.__front: int = 0 # 队首指针,指向队首元素
self.__size: int = 0 # 队列长度
self.__front: int = 0 # 队首指针,指向队首元素
self.__size: int = 0 # 队列长度
def capacity(self) -> int:
""" 获取队列的容量 """
"""获取队列的容量"""
return len(self.__nums)
def size(self) -> int:
""" 获取队列的长度 """
"""获取队列的长度"""
return self.__size
def is_empty(self) -> bool:
""" 判断队列是否为空 """
"""判断队列是否为空"""
return self.__size == 0
def push(self, num: int) -> None:
""" 入队 """
"""入队"""
assert self.__size < self.capacity(), "队列已满"
# 计算尾指针,指向队尾索引 + 1
# 通过取余操作,实现 rear 越过数组尾部后回到头部
@ -1133,7 +1135,7 @@ comments: true
self.__size += 1
def pop(self) -> int:
""" 出队 """
"""出队"""
num: int = self.peek()
# 队首指针向后移动一位,若越过尾部则返回到数组头部
self.__front = (self.__front + 1) % self.capacity()
@ -1141,12 +1143,12 @@ comments: true
return num
def peek(self) -> int:
""" 访问队首元素 """
"""访问队首元素"""
assert not self.is_empty(), "队列为空"
return self.__nums[self.__front]
def to_list(self) -> list[int]:
""" 返回列表用于打印 """
"""返回列表用于打印"""
res: list[int] = [0] * self.size()
j: int = self.__front
for i in range(self.size()):

View File

@ -409,42 +409,44 @@ comments: true
```python title="linkedlist_stack.py"
class LinkedListStack:
""" 基于链表实现的栈 """
"""基于链表实现的栈"""
def __init__(self):
""" 构造方法 """
"""构造方法"""
self.__peek: ListNode | None = None
self.__size: int = 0
def size(self) -> int:
""" 获取栈的长度 """
"""获取栈的长度"""
return self.__size
def is_empty(self) -> bool:
""" 判断栈是否为空 """
"""判断栈是否为空"""
return not self.__peek
def push(self, val: int) -> None:
""" 入栈 """
"""入栈"""
node = ListNode(val)
node.next = self.__peek
self.__peek = node
self.__size += 1
def pop(self) -> int:
""" 出栈 """
"""出栈"""
num: int = self.peek()
self.__peek = self.__peek.next
self.__size -= 1
return num
def peek(self) -> int:
""" 访问栈顶元素 """
"""访问栈顶元素"""
# 判空处理
if not self.__peek: return None
if not self.__peek:
return None
return self.__peek.val
def to_list(self) -> list[int]:
""" 转化为列表用于打印 """
"""转化为列表用于打印"""
arr: list[int] = []
node = self.__peek
while node:
@ -951,35 +953,36 @@ comments: true
```python title="array_stack.py"
class ArrayStack:
""" 基于数组实现的栈 """
"""基于数组实现的栈"""
def __init__(self) -> None:
""" 构造方法 """
"""构造方法"""
self.__stack: list[int] = []
def size(self) -> int:
""" 获取栈的长度 """
"""获取栈的长度"""
return len(self.__stack)
def is_empty(self) -> bool:
""" 判断栈是否为空 """
"""判断栈是否为空"""
return self.__stack == []
def push(self, item: int) -> None:
""" 入栈 """
"""入栈"""
self.__stack.append(item)
def pop(self) -> int:
""" 出栈 """
"""出栈"""
assert not self.is_empty(), "栈为空"
return self.__stack.pop()
def peek(self) -> int:
""" 访问栈顶元素 """
"""访问栈顶元素"""
assert not self.is_empty(), "栈为空"
return self.__stack[-1]
def to_list(self) -> list[int]:
""" 返回列表用于打印 """
"""返回列表用于打印"""
return self.__stack
```

View File

@ -195,14 +195,14 @@ G. M. Adelson-Velsky 和 E. M. Landis 在其 1962 年发表的论文 "An algorit
```python title="avl_tree.py"
def height(self, node: TreeNode | None) -> int:
""" 获取节点高度 """
"""获取节点高度"""
# 空节点高度为 -1 ,叶节点高度为 0
if node is not None:
return node.height
return -1
def __update_height(self, node: TreeNode | None):
""" 更新节点高度 """
"""更新节点高度"""
# 节点高度等于最高子树高度 + 1
node.height = max([self.height(node.left), self.height(node.right)]) + 1
```
@ -355,7 +355,7 @@ G. M. Adelson-Velsky 和 E. M. Landis 在其 1962 年发表的论文 "An algorit
```python title="avl_tree.py"
def balance_factor(self, node: TreeNode | None) -> int:
""" 获取平衡因子 """
"""获取平衡因子"""
# 空节点平衡因子为 0
if node is None:
return 0
@ -518,7 +518,7 @@ AVL 树的独特之处在于「旋转 Rotation」的操作其可 **在不影
```python title="avl_tree.py"
def __right_rotate(self, node: TreeNode | None) -> TreeNode | None:
""" 右旋操作 """
"""右旋操作"""
child = node.left
grand_child = child.right
# 以 child 为原点,将 node 向右旋转
@ -702,7 +702,7 @@ AVL 树的独特之处在于「旋转 Rotation」的操作其可 **在不影
```python title="avl_tree.py"
def __left_rotate(self, node: TreeNode | None) -> TreeNode | None:
""" 左旋操作 """
"""左旋操作"""
child = node.right
grand_child = child.left
# 以 child 为原点,将 node 向左旋转
@ -941,7 +941,7 @@ AVL 树的独特之处在于「旋转 Rotation」的操作其可 **在不影
```python title="avl_tree.py"
def __rotate(self, node: TreeNode | None) -> TreeNode | None:
""" 执行旋转操作,使该子树重新恢复平衡 """
"""执行旋转操作,使该子树重新恢复平衡"""
# 获取节点 node 的平衡因子
balance_factor = self.balance_factor(node)
# 左偏树
@ -1251,12 +1251,12 @@ AVL 树的独特之处在于「旋转 Rotation」的操作其可 **在不影
```python title="avl_tree.py"
def insert(self, val) -> TreeNode:
""" 插入节点 """
"""插入节点"""
self.__root = self.__insert_helper(self.__root, val)
return self.__root
def __insert_helper(self, node: TreeNode | None, val: int) -> TreeNode:
""" 递归插入节点(辅助方法)"""
"""递归插入节点(辅助方法)"""
if node is None:
return TreeNode(val)
# 1. 查找插入位置,并插入节点
@ -1576,12 +1576,12 @@ AVL 树的独特之处在于「旋转 Rotation」的操作其可 **在不影
```python title="avl_tree.py"
def remove(self, val: int) -> TreeNode | None:
""" 删除节点 """
"""删除节点"""
self.__root = self.__remove_helper(self.__root, val)
return self.__root
return self.__root
def __remove_helper(self, node: TreeNode | None, val: int) -> TreeNode | None:
""" 递归删除节点(辅助方法) """
"""递归删除节点(辅助方法)"""
if node is None:
return None
# 1. 查找节点,并删除之
@ -1608,7 +1608,7 @@ AVL 树的独特之处在于「旋转 Rotation」的操作其可 **在不影
return self.__rotate(node)
def __get_inorder_next(self, node: TreeNode | None) -> TreeNode | None:
""" 获取中序遍历中的下一个节点(仅适用于 root 有左子节点的情况) """
"""获取中序遍历中的下一个节点(仅适用于 root 有左子节点的情况)"""
if node is None:
return None
# 循环访问左子节点,直到叶节点时为最小节点,跳出

View File

@ -81,7 +81,7 @@ comments: true
```python title="binary_search_tree.py"
def search(self, num: int) -> TreeNode | None:
""" 查找节点 """
"""查找节点"""
cur: TreeNode | None = self.__root
# 循环查找,越过叶节点后跳出
while cur is not None:
@ -309,11 +309,11 @@ comments: true
```python title="binary_search_tree.py"
def insert(self, num: int) -> TreeNode | None:
""" 插入节点 """
"""插入节点"""
# 若树为空,直接提前返回
if self.__root is None:
return None
# 循环查找,越过叶节点后跳出
cur, pre = self.__root, None
while cur is not None:
@ -692,7 +692,7 @@ comments: true
```python title="binary_search_tree.py"
def remove(self, num: int) -> TreeNode | None:
""" 删除节点 """
"""删除节点"""
# 若树为空,直接提前返回
if self.__root is None:
return None
@ -733,7 +733,7 @@ comments: true
return cur
def get_inorder_next(self, root: TreeNode | None) -> TreeNode | None:
""" 获取中序遍历中的下一个节点(仅适用于 root 有左子节点的情况) """
"""获取中序遍历中的下一个节点(仅适用于 root 有左子节点的情况)"""
if root is None:
return root
# 循环访问左子节点,直到叶节点时为最小节点,跳出

View File

@ -70,19 +70,19 @@ comments: true
```python title="binary_tree_bfs.py"
def level_order(root: TreeNode | None) -> list[int]:
""" 层序遍历 """
"""层序遍历"""
# 初始化队列,加入根节点
queue: deque[TreeNode] = deque()
queue.append(root)
# 初始化一个列表,用于保存遍历序列
res: list[int] = []
while queue:
node: TreeNode = queue.popleft() # 队列出队
res.append(node.val) # 保存节点值
node: TreeNode = queue.popleft() # 队列出队
res.append(node.val) # 保存节点值
if node.left is not None:
queue.append(node.left) # 左子节点入队
queue.append(node.left) # 左子节点入队
if node.right is not None:
queue.append(node.right) # 右子节点入队
queue.append(node.right) # 右子节点入队
return res
```
@ -338,7 +338,7 @@ comments: true
```python title="binary_tree_dfs.py"
def pre_order(root: TreeNode | None) -> None:
""" 前序遍历 """
"""前序遍历"""
if root is None:
return
# 访问优先级:根节点 -> 左子树 -> 右子树
@ -347,7 +347,7 @@ comments: true
pre_order(root=root.right)
def in_order(root: TreeNode | None) -> None:
""" 中序遍历 """
"""中序遍历"""
if root is None:
return
# 访问优先级:左子树 -> 根节点 -> 右子树
@ -356,7 +356,7 @@ comments: true
in_order(root=root.right)
def post_order(root: TreeNode | None) -> None:
""" 后序遍历 """
"""后序遍历"""
if root is None:
return
# 访问优先级:左子树 -> 右子树 -> 根节点