build
This commit is contained in:
parent
88af400ba9
commit
2ac1840c60
266
chapter_sorting/counting_sort.md
Normal file
266
chapter_sorting/counting_sort.md
Normal file
@ -0,0 +1,266 @@
|
||||
---
|
||||
comments: true
|
||||
---
|
||||
|
||||
# 11.6. 计数排序
|
||||
|
||||
前面介绍的几种排序算法都属于 **基于比较的排序算法**,即通过比较元素之间的大小来实现排序,此类排序算法的时间复杂度无法超越 $O(n \log n)$ 。接下来,我们将学习一种 **非比较排序算法** ,名为「计数排序 Counting Sort」,其时间复杂度可以达到 $O(n)$ 。
|
||||
|
||||
## 11.6.1. 简单实现
|
||||
|
||||
先看一个简单例子。给定一个长度为 $n$ 的数组 `nums` ,元素皆为 **非负整数**。计数排序的整体流程为:
|
||||
|
||||
1. 统计数组的最大数字,记为 $m$ ,并建立一个长度为 $m + 1$ 的辅助数组 `counter` ;
|
||||
2. **借助 `counter` 统计 `nums` 中各数字的出现次数**,其中 `counter[num]` 对应数字 `num` 的出现次数。统计方法很简单,只需遍历 `nums` (设当前数字为 `num`),每轮将 `counter[num]` 自增 $1$ 即可。
|
||||
3. **由于 `counter` 的各个索引是天然有序的,因此相当于所有数字已经被排序好了**。接下来,我们遍历 `counter` ,根据各数字的出现次数,将各数字按从小到大的顺序填入 `nums` 即可。
|
||||
|
||||
=== "<1>"
|
||||

|
||||
|
||||
=== "<2>"
|
||||

|
||||
|
||||
=== "<3>"
|
||||

|
||||
|
||||
以下是实现代码,计数排序名副其实,确实是通过“统计数量”来实现排序的。
|
||||
|
||||
=== "Java"
|
||||
|
||||
```java title="counting_sort.java"
|
||||
/* 计数排序 */
|
||||
// 该实现无法用于排序对象
|
||||
void countingSortNaive(int[] nums) {
|
||||
// 1. 统计数组最大元素 m
|
||||
int m = 0;
|
||||
for (int num : nums) {
|
||||
m = Math.max(m, num);
|
||||
}
|
||||
// 2. 统计各数字的出现次数
|
||||
// counter[num] 代表 num 的出现次数
|
||||
int[] counter = new int[m + 1];
|
||||
for (int num : nums) {
|
||||
counter[num]++;
|
||||
}
|
||||
// 3. 遍历 counter ,将各元素填入原数组 nums
|
||||
int i = 0;
|
||||
for (int num = 0; num < m + 1; num++) {
|
||||
for (int j = 0; j < counter[num]; j++, i++) {
|
||||
nums[i] = num;
|
||||
}
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
=== "C++"
|
||||
|
||||
```cpp title="counting_sort.cpp"
|
||||
[class]{}-[func]{countingSortNaive}
|
||||
```
|
||||
|
||||
=== "Python"
|
||||
|
||||
```python title="counting_sort.py"
|
||||
[class]{}-[func]{counting_sort_naive}
|
||||
```
|
||||
|
||||
=== "Go"
|
||||
|
||||
```go title="counting_sort.go"
|
||||
[class]{}-[func]{countingSortNaive}
|
||||
```
|
||||
|
||||
=== "JavaScript"
|
||||
|
||||
```javascript title="counting_sort.js"
|
||||
[class]{}-[func]{countingSortNaive}
|
||||
```
|
||||
|
||||
=== "TypeScript"
|
||||
|
||||
```typescript title="counting_sort.ts"
|
||||
[class]{}-[func]{countingSortNaive}
|
||||
```
|
||||
|
||||
=== "C"
|
||||
|
||||
```c title="counting_sort.c"
|
||||
[class]{}-[func]{countingSortNaive}
|
||||
```
|
||||
|
||||
=== "C#"
|
||||
|
||||
```csharp title="counting_sort.cs"
|
||||
[class]{counting_sort}-[func]{countingSortNaive}
|
||||
```
|
||||
|
||||
=== "Swift"
|
||||
|
||||
```swift title="counting_sort.swift"
|
||||
[class]{}-[func]{countingSortNaive}
|
||||
```
|
||||
|
||||
=== "Zig"
|
||||
|
||||
```zig title="counting_sort.zig"
|
||||
[class]{}-[func]{countingSortNaive}
|
||||
```
|
||||
|
||||
## 11.6.2. 完整实现
|
||||
|
||||
细心的同学可能发现,**如果输入数据是对象,上述步骤 `3.` 就失效了**。例如输入数据是商品对象,我们想要按照商品价格(类的成员变量)对商品进行排序,而上述算法只能给出价格的排序结果。
|
||||
|
||||
那么如何才能得到原数据的排序结果呢?我们首先计算 `counter` 的「前缀和」,顾名思义,索引 `i` 处的前缀和 `prefix[i]` 等于数组前 `i` 个元素之和,即
|
||||
|
||||
$$
|
||||
\text{prefix}[i] = \sum_{j=0}^i \text{counter[j]}
|
||||
$$
|
||||
|
||||
**前缀和具有明确意义,`prefix[num] - 1` 代表元素 `num` 在结果数组 `res` 中最后一次出现的索引**。这个信息很关键,因为其给出了各个元素应该出现在结果数组的哪个位置。接下来,我们倒序遍历原数组 `nums` 的每个元素 `num` ,在每轮迭代中执行:
|
||||
|
||||
1. 将 `num` 填入数组 `res` 的索引 `prefix[num] - 1` 处;
|
||||
2. 令前缀和 `prefix[num]` 自减 $1$ ,从而得到下次放置 `num` 的索引;
|
||||
|
||||
完成遍历后,数组 `res` 中就是排序好的结果,最后使用 `res` 覆盖原数组 `nums` 即可;
|
||||
|
||||
=== "<1>"
|
||||

|
||||
|
||||
=== "<2>"
|
||||

|
||||
|
||||
=== "<3>"
|
||||

|
||||
|
||||
=== "<4>"
|
||||

|
||||
|
||||
=== "<5>"
|
||||

|
||||
|
||||
=== "<6>"
|
||||

|
||||
|
||||
=== "<7>"
|
||||

|
||||
|
||||
=== "<8>"
|
||||

|
||||
|
||||
计数排序的实现代码如下所示。
|
||||
|
||||
=== "Java"
|
||||
|
||||
```java title="counting_sort.java"
|
||||
/* 计数排序 */
|
||||
// 该实现可排序对象,并且是稳定排序
|
||||
void countingSort(int[] nums) {
|
||||
// 1. 统计数组最大元素 m
|
||||
int m = 0;
|
||||
for (int num : nums) {
|
||||
m = Math.max(m, num);
|
||||
}
|
||||
// 2. 统计各数字的出现次数
|
||||
// counter[num] 代表 num 的出现次数
|
||||
int[] counter = new int[m + 1];
|
||||
for (int num : nums) {
|
||||
counter[num]++;
|
||||
}
|
||||
// 3. 求 counter 的前缀和,将“出现次数”转换为“尾索引”
|
||||
// 即 counter[num]-1 是 num 在 res 中最后一次出现的索引
|
||||
for (int i = 0; i < m; i++) {
|
||||
counter[i + 1] += counter[i];
|
||||
}
|
||||
// 4. 倒序遍历 nums ,将各元素填入结果数组 res
|
||||
// 初始化数组 res 用于记录结果
|
||||
int n = nums.length;
|
||||
int[] res = new int[n];
|
||||
for (int i = n - 1; i >= 0; i--) {
|
||||
int num = nums[i];
|
||||
res[counter[num] - 1] = num; // 将 num 放置到对应索引处
|
||||
counter[num]--; // 令前缀和自减 1 ,得到下次放置 num 的索引
|
||||
}
|
||||
// 使用结果数组 res 覆盖原数组 nums
|
||||
for (int i = 0; i < n; i++) {
|
||||
nums[i] = res[i];
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
=== "C++"
|
||||
|
||||
```cpp title="counting_sort.cpp"
|
||||
[class]{}-[func]{countingSort}
|
||||
```
|
||||
|
||||
=== "Python"
|
||||
|
||||
```python title="counting_sort.py"
|
||||
[class]{}-[func]{counting_sort}
|
||||
```
|
||||
|
||||
=== "Go"
|
||||
|
||||
```go title="counting_sort.go"
|
||||
[class]{}-[func]{countingSort}
|
||||
```
|
||||
|
||||
=== "JavaScript"
|
||||
|
||||
```javascript title="counting_sort.js"
|
||||
[class]{}-[func]{countingSort}
|
||||
```
|
||||
|
||||
=== "TypeScript"
|
||||
|
||||
```typescript title="counting_sort.ts"
|
||||
[class]{}-[func]{countingSort}
|
||||
```
|
||||
|
||||
=== "C"
|
||||
|
||||
```c title="counting_sort.c"
|
||||
[class]{}-[func]{countingSort}
|
||||
```
|
||||
|
||||
=== "C#"
|
||||
|
||||
```csharp title="counting_sort.cs"
|
||||
[class]{counting_sort}-[func]{countingSort}
|
||||
```
|
||||
|
||||
=== "Swift"
|
||||
|
||||
```swift title="counting_sort.swift"
|
||||
[class]{}-[func]{countingSort}
|
||||
```
|
||||
|
||||
=== "Zig"
|
||||
|
||||
```zig title="counting_sort.zig"
|
||||
[class]{}-[func]{countingSort}
|
||||
```
|
||||
|
||||
## 11.6.3. 算法特性
|
||||
|
||||
**时间复杂度 $O(n + m)$** :涉及遍历 `nums` 和遍历 `counter` ,都使用线性时间。一般情况下 $n \gg m$ ,此时使用线性 $O(n)$ 时间。
|
||||
|
||||
**空间复杂度 $O(n + m)$** :数组 `res` 和 `counter` 长度分别为 $n$ , $m$ 。
|
||||
|
||||
**非原地排序**:借助了辅助数组 `counter` 和结果数组 `res` 的额外空间。
|
||||
|
||||
**稳定排序**:倒序遍历 `nums` 保持了相等元素的相对位置。
|
||||
|
||||
**非自适应排序**:与元素分布无关。
|
||||
|
||||
!!! question "为什么是稳定排序?"
|
||||
|
||||
由于向 `res` 中填充元素的顺序是“从右向左”的,因此倒序遍历 `nums` 可以避免改变相等元素之间的相对位置,从而实现“稳定排序”;其实正序遍历 `nums` 也可以得到正确的排序结果,但结果“非稳定”。
|
||||
|
||||
## 11.6.4. 局限性
|
||||
|
||||
看到这里,你也许会觉得计数排序太妙了,咔咔一通操作,时间复杂度就下来了。但实际上与其它算法一样,计数排序也无法摆脱“此消彼长”的宿命,**时间复杂度优化的代价是通用型变差**。
|
||||
|
||||
**计数排序只适用于非负整数**。若想要用在其他类型数据上,则要求该数据必须可以被转化为非负整数,并且不能改变各个元素之间的相对大小关系。例如,对于包含负数的整数数组,可以先给所有数字加上一个常数,将全部数字转化为正数,排序完成后再转换回去即可。
|
||||
|
||||
**计数排序只适用于数据范围不大的情况**。比如,上述示例中 $m$ 不能太大,否则占用空间太多;而当 $n \ll m$ 时,计数排序使用 $O(m)$ 时间,有可能比 $O(n \log n)$ 的排序算法还要慢。
|
@ -2,7 +2,7 @@
|
||||
comments: true
|
||||
---
|
||||
|
||||
# 11.6. 小结
|
||||
# 11.7. 小结
|
||||
|
||||
- 冒泡排序通过交换相邻元素来实现排序。通过增加标志位实现提前返回,我们可将冒泡排序的最佳时间复杂度优化至 $O(N)$ 。
|
||||
- 插入排序每轮将待排序区间内元素插入至已排序区间的正确位置,从而实现排序。插入排序的时间复杂度虽为 $O(N^2)$ ,但因为总体操作少而很受欢迎,一般用于小数据量的排序工作。
|
||||
|
Loading…
Reference in New Issue
Block a user