Merge branch 'main' into dev
This commit is contained in:
commit
062a350b37
@ -0,0 +1,37 @@
|
||||
=begin
|
||||
File: climbing_stairs_backtrack.rb
|
||||
Created Time: 2024-05-29
|
||||
Author: Xuan Khoa Tu Nguyen (ngxktuzkai2000@gmail.com)
|
||||
=end
|
||||
|
||||
### 回溯 ###
|
||||
def backtrack(choices, state, n, res)
|
||||
# 当爬到第 n 阶时,方案数量加 1
|
||||
res[0] += 1 if state == n
|
||||
# 遍历所有选择
|
||||
for choice in choices
|
||||
# 剪枝:不允许越过第 n 阶
|
||||
next if state + choice > n
|
||||
|
||||
# 尝试:做出选择,更新状态
|
||||
backtrack(choices, state + choice, n, res)
|
||||
end
|
||||
# 回退
|
||||
end
|
||||
|
||||
### 爬楼梯:回溯 ###
|
||||
def climbing_stairs_backtrack(n)
|
||||
choices = [1, 2] # 可选择向上爬 1 阶或 2 阶
|
||||
state = 0 # 从第 0 阶开始爬
|
||||
res = [0] # 使用 res[0] 记录方案数量
|
||||
backtrack(choices, state, n, res)
|
||||
res.first
|
||||
end
|
||||
|
||||
### Driver Code ###
|
||||
if __FILE__ == $0
|
||||
n = 9
|
||||
|
||||
res = climbing_stairs_backtrack(n)
|
||||
puts "爬 #{n} 阶楼梯共有 #{res} 种方案"
|
||||
end
|
@ -0,0 +1,31 @@
|
||||
=begin
|
||||
File: climbing_stairs_constraint_dp.rb
|
||||
Created Time: 2024-05-29
|
||||
Author: Xuan Khoa Tu Nguyen (ngxktuzkai2000@gmail.com)
|
||||
=end
|
||||
|
||||
### 带约束爬楼梯:动态规划 ###
|
||||
def climbing_stairs_backtrack(n)
|
||||
return 1 if n == 1 || n == 2
|
||||
|
||||
# 初始化 dp 表,用于存储子问题的解
|
||||
dp = Array.new(n + 1) { Array.new(3, 0) }
|
||||
# 初始状态:预设最小子问题的解
|
||||
dp[1][1], dp[1][2] = 1, 0
|
||||
dp[2][1], dp[2][2] = 0, 1
|
||||
# 状态转移:从较小子问题逐步求解较大子问题
|
||||
for i in 3...(n + 1)
|
||||
dp[i][1] = dp[i - 1][2]
|
||||
dp[i][2] = dp[i - 2][1] + dp[i - 2][2]
|
||||
end
|
||||
|
||||
dp[n][1] + dp[n][2]
|
||||
end
|
||||
|
||||
### Driver Code ###
|
||||
if __FILE__ == $0
|
||||
n = 9
|
||||
|
||||
res = climbing_stairs_backtrack(n)
|
||||
puts "爬 #{n} 阶楼梯共有 #{res} 种方案"
|
||||
end
|
@ -0,0 +1,26 @@
|
||||
=begin
|
||||
File: climbing_stairs_dfs.rb
|
||||
Created Time: 2024-05-29
|
||||
Author: Xuan Khoa Tu Nguyen (ngxktuzkai2000@gmail.com)
|
||||
=end
|
||||
|
||||
### 搜索 ###
|
||||
def dfs(i)
|
||||
# 已知 dp[1] 和 dp[2] ,返回之
|
||||
return i if i == 1 || i == 2
|
||||
# dp[i] = dp[i-1] + dp[i-2]
|
||||
dfs(i - 1) + dfs(i - 2)
|
||||
end
|
||||
|
||||
### 爬楼梯:搜索 ###
|
||||
def climbing_stairs_dfs(n)
|
||||
dfs(n)
|
||||
end
|
||||
|
||||
### Driver Code ###
|
||||
if __FILE__ == $0
|
||||
n = 9
|
||||
|
||||
res = climbing_stairs_dfs(n)
|
||||
puts "爬 #{n} 阶楼梯共有 #{res} 种方案"
|
||||
end
|
@ -0,0 +1,33 @@
|
||||
=begin
|
||||
File: climbing_stairs_dfs_mem.rb
|
||||
Created Time: 2024-05-29
|
||||
Author: Xuan Khoa Tu Nguyen (ngxktuzkai2000@gmail.com)
|
||||
=end
|
||||
|
||||
### 记忆化搜索 ###
|
||||
def dfs(i, mem)
|
||||
# 已知 dp[1] 和 dp[2] ,返回之
|
||||
return i if i == 1 || i == 2
|
||||
# 若存在记录 dp[i] ,则直接返回之
|
||||
return mem[i] if mem[i] != -1
|
||||
|
||||
# dp[i] = dp[i-1] + dp[i-2]
|
||||
count = dfs(i - 1, mem) + dfs(i - 2, mem)
|
||||
# 记录 dp[i]
|
||||
mem[i] = count
|
||||
end
|
||||
|
||||
### 爬楼梯:记忆化搜索 ###
|
||||
def climbing_stairs_dfs_mem(n)
|
||||
# mem[i] 记录爬到第 i 阶的方案总数,-1 代表无记录
|
||||
mem = Array.new(n + 1, -1)
|
||||
dfs(n, mem)
|
||||
end
|
||||
|
||||
### Driver Code ###
|
||||
if __FILE__ == $0
|
||||
n = 9
|
||||
|
||||
res = climbing_stairs_dfs_mem(n)
|
||||
puts "爬 #{n} 阶楼梯共有 #{res} 种方案"
|
||||
end
|
40
codes/ruby/chapter_dynamic_programming/climbing_stairs_dp.rb
Normal file
40
codes/ruby/chapter_dynamic_programming/climbing_stairs_dp.rb
Normal file
@ -0,0 +1,40 @@
|
||||
=begin
|
||||
File: climbing_stairs_dp.rb
|
||||
Created Time: 2024-05-29
|
||||
Author: Xuan Khoa Tu Nguyen (ngxktuzkai2000@gmail.com)
|
||||
=end
|
||||
|
||||
### 爬楼梯:动态规划 ###
|
||||
def climbing_stairs_dp(n)
|
||||
return n if n == 1 || n == 2
|
||||
|
||||
# 初始化 dp 表,用于存储子问题的解
|
||||
dp = Array.new(n + 1, 0)
|
||||
# 初始状态:预设最小子问题的解
|
||||
dp[1], dp[2] = 1, 2
|
||||
# 状态转移:从较小子问题逐步求解较大子问题
|
||||
(3...(n + 1)).each { |i| dp[i] = dp[i - 1] + dp[i - 2] }
|
||||
|
||||
dp[n]
|
||||
end
|
||||
|
||||
### 爬楼梯:空间优化后的动态规划 ###
|
||||
def climbing_stairs_dp_comp(n)
|
||||
return n if n == 1 || n == 2
|
||||
|
||||
a, b = 1, 2
|
||||
(3...(n + 1)).each { a, b = b, a + b }
|
||||
|
||||
b
|
||||
end
|
||||
|
||||
### Driver Code ###
|
||||
if __FILE__ == $0
|
||||
n = 9
|
||||
|
||||
res = climbing_stairs_dp(n)
|
||||
puts "爬 #{n} 阶楼梯共有 #{res} 种方案"
|
||||
|
||||
res = climbing_stairs_dp_comp(n)
|
||||
puts "爬 #{n} 阶楼梯共有 #{res} 种方案"
|
||||
end
|
65
codes/ruby/chapter_dynamic_programming/coin_change.rb
Normal file
65
codes/ruby/chapter_dynamic_programming/coin_change.rb
Normal file
@ -0,0 +1,65 @@
|
||||
=begin
|
||||
File: coin_change.rb
|
||||
Created Time: 2024-05-29
|
||||
Author: Xuan Khoa Tu Nguyen (ngxktuzkai2000@gmail.com)
|
||||
=end
|
||||
|
||||
### 零钱兑换:动态规划 ###
|
||||
def coin_change_dp(coins, amt)
|
||||
n = coins.length
|
||||
_MAX = amt + 1
|
||||
# 初始化 dp 表
|
||||
dp = Array.new(n + 1) { Array.new(amt + 1, 0) }
|
||||
# 状态转移:首行首列
|
||||
(1...(amt + 1)).each { |a| dp[0][a] = _MAX }
|
||||
# 状态转移:其余行和列
|
||||
for i in 1...(n + 1)
|
||||
for a in 1...(amt + 1)
|
||||
if coins[i - 1] > a
|
||||
# 若超过目标金额,则不选硬币 i
|
||||
dp[i][a] = dp[i - 1][a]
|
||||
else
|
||||
# 不选和选硬币 i 这两种方案的较小值
|
||||
dp[i][a] = [dp[i - 1][a], dp[i][a - coins[i - 1]] + 1].min
|
||||
end
|
||||
end
|
||||
end
|
||||
dp[n][amt] != _MAX ? dp[n][amt] : -1
|
||||
end
|
||||
|
||||
### 零钱兑换:空间优化后的动态规划 ###
|
||||
def coin_change_dp_comp(coins, amt)
|
||||
n = coins.length
|
||||
_MAX = amt + 1
|
||||
# 初始化 dp 表
|
||||
dp = Array.new(amt + 1, _MAX)
|
||||
dp[0] = 0
|
||||
# 状态转移
|
||||
for i in 1...(n + 1)
|
||||
# 正序遍历
|
||||
for a in 1...(amt + 1)
|
||||
if coins[i - 1] > a
|
||||
# 若超过目标金额,则不选硬币 i
|
||||
dp[a] = dp[a]
|
||||
else
|
||||
# 不选和选硬币 i 这两种方案的较小值
|
||||
dp[a] = [dp[a], dp[a - coins[i - 1]] + 1].min
|
||||
end
|
||||
end
|
||||
end
|
||||
dp[amt] != _MAX ? dp[amt] : -1
|
||||
end
|
||||
|
||||
### Driver Code ###
|
||||
if __FILE__ == $0
|
||||
coins = [1, 2, 5]
|
||||
amt = 4
|
||||
|
||||
# 动态规划
|
||||
res = coin_change_dp(coins, amt)
|
||||
puts "凑到目标金额所需的最少硬币数量为 #{res}"
|
||||
|
||||
# 空间优化后的动态规划
|
||||
res = coin_change_dp_comp(coins, amt)
|
||||
puts "凑到目标金额所需的最少硬币数量为 #{res}"
|
||||
end
|
63
codes/ruby/chapter_dynamic_programming/coin_change_ii.rb
Normal file
63
codes/ruby/chapter_dynamic_programming/coin_change_ii.rb
Normal file
@ -0,0 +1,63 @@
|
||||
=begin
|
||||
File: coin_change_ii.rb
|
||||
Created Time: 2024-05-29
|
||||
Author: Xuan Khoa Tu Nguyen (ngxktuzkai2000@gmail.com)
|
||||
=end
|
||||
|
||||
### 零钱兑换 II:动态规划 ###
|
||||
def coin_change_ii_dp(coins, amt)
|
||||
n = coins.length
|
||||
# 初始化 dp 表
|
||||
dp = Array.new(n + 1) { Array.new(amt + 1, 0) }
|
||||
# 初始化首列
|
||||
(0...(n + 1)).each { |i| dp[i][0] = 1 }
|
||||
# 状态转移
|
||||
for i in 1...(n + 1)
|
||||
for a in 1...(amt + 1)
|
||||
if coins[i - 1] > a
|
||||
# 若超过目标金额,则不选硬币 i
|
||||
dp[i][a] = dp[i - 1][a]
|
||||
else
|
||||
# 不选和选硬币 i 这两种方案之和
|
||||
dp[i][a] = dp[i - 1][a] + dp[i][a - coins[i - 1]]
|
||||
end
|
||||
end
|
||||
end
|
||||
dp[n][amt]
|
||||
end
|
||||
|
||||
### 零钱兑换 II:空间优化后的动态规划 ###
|
||||
def coin_change_ii_dp_comp(coins, amt)
|
||||
n = coins.length
|
||||
# 初始化 dp 表
|
||||
dp = Array.new(amt + 1, 0)
|
||||
dp[0] = 1
|
||||
# 状态转移
|
||||
for i in 1...(n + 1)
|
||||
# 正序遍历
|
||||
for a in 1...(amt + 1)
|
||||
if coins[i - 1] > a
|
||||
# 若超过目标金额,则不选硬币 i
|
||||
dp[a] = dp[a]
|
||||
else
|
||||
# 不选和选硬币 i 这两种方案之和
|
||||
dp[a] = dp[a] + dp[a - coins[i - 1]]
|
||||
end
|
||||
end
|
||||
end
|
||||
dp[amt]
|
||||
end
|
||||
|
||||
### Driver Code ###
|
||||
if __FILE__ == $0
|
||||
coins = [1, 2, 5]
|
||||
amt = 5
|
||||
|
||||
# 动态规划
|
||||
res = coin_change_ii_dp(coins, amt)
|
||||
puts "凑出目标金额的硬币组合数量为 #{res}"
|
||||
|
||||
# 空间优化后的动态规划
|
||||
res = coin_change_ii_dp_comp(coins, amt)
|
||||
puts "凑出目标金额的硬币组合数量为 #{res}"
|
||||
end
|
115
codes/ruby/chapter_dynamic_programming/edit_distance.rb
Normal file
115
codes/ruby/chapter_dynamic_programming/edit_distance.rb
Normal file
@ -0,0 +1,115 @@
|
||||
=begin
|
||||
File: edit_distance.rb
|
||||
Created Time: 2024-05-29
|
||||
Author: Xuan Khoa Tu Nguyen (ngxktuzkai2000@gmail.com)
|
||||
=end
|
||||
|
||||
### 编辑距离:暴力搜索 ###
|
||||
def edit_distance_dfs(s, t, i, j)
|
||||
# 若 s 和 t 都为空,则返回 0
|
||||
return 0 if i == 0 && j == 0
|
||||
# 若 s 为空,则返回 t 长度
|
||||
return j if i == 0
|
||||
# 若 t 为空,则返回 s 长度
|
||||
return i if j == 0
|
||||
# 若两字符相等,则直接跳过此两字符
|
||||
return edit_distance_dfs(s, t, i - 1, j - 1) if s[i - 1] == t[j - 1]
|
||||
# 最少编辑步数 = 插入、删除、替换这三种操作的最少编辑步数 + 1
|
||||
insert = edit_distance_dfs(s, t, i, j - 1)
|
||||
delete = edit_distance_dfs(s, t, i - 1, j)
|
||||
replace = edit_distance_dfs(s, t, i - 1, j - 1)
|
||||
# 返回最少编辑步数
|
||||
[insert, delete, replace].min + 1
|
||||
end
|
||||
|
||||
def edit_distance_dfs_mem(s, t, mem, i, j)
|
||||
# 若 s 和 t 都为空,则返回 0
|
||||
return 0 if i == 0 && j == 0
|
||||
# 若 s 为空,则返回 t 长度
|
||||
return j if i == 0
|
||||
# 若 t 为空,则返回 s 长度
|
||||
return i if j == 0
|
||||
# 若已有记录,则直接返回之
|
||||
return mem[i][j] if mem[i][j] != -1
|
||||
# 若两字符相等,则直接跳过此两字符
|
||||
return edit_distance_dfs_mem(s, t, mem, i - 1, j - 1) if s[i - 1] == t[j - 1]
|
||||
# 最少编辑步数 = 插入、删除、替换这三种操作的最少编辑步数 + 1
|
||||
insert = edit_distance_dfs_mem(s, t, mem, i, j - 1)
|
||||
delete = edit_distance_dfs_mem(s, t, mem, i - 1, j)
|
||||
replace = edit_distance_dfs_mem(s, t, mem, i - 1, j - 1)
|
||||
# 记录并返回最少编辑步数
|
||||
mem[i][j] = [insert, delete, replace].min + 1
|
||||
end
|
||||
|
||||
### 编辑距离:动态规划 ###
|
||||
def edit_distance_dp(s, t)
|
||||
n, m = s.length, t.length
|
||||
dp = Array.new(n + 1) { Array.new(m + 1, 0) }
|
||||
# 状态转移:首行首列
|
||||
(1...(n + 1)).each { |i| dp[i][0] = i }
|
||||
(1...(m + 1)).each { |j| dp[0][j] = j }
|
||||
# 状态转移:其余行和列
|
||||
for i in 1...(n + 1)
|
||||
for j in 1...(m +1)
|
||||
if s[i - 1] == t[j - 1]
|
||||
# 若两字符相等,则直接跳过此两字符
|
||||
dp[i][j] = dp[i - 1][j - 1]
|
||||
else
|
||||
# 最少编辑步数 = 插入、删除、替换这三种操作的最少编辑步数 + 1
|
||||
dp[i][j] = [dp[i][j - 1], dp[i - 1][j], dp[i - 1][j - 1]].min + 1
|
||||
end
|
||||
end
|
||||
end
|
||||
dp[n][m]
|
||||
end
|
||||
|
||||
### 编辑距离:空间优化后的动态规划 ###
|
||||
def edit_distance_dp_comp(s, t)
|
||||
n, m = s.length, t.length
|
||||
dp = Array.new(m + 1, 0)
|
||||
# 状态转移:首行
|
||||
(1...(m + 1)).each { |j| dp[j] = j }
|
||||
# 状态转移:其余行
|
||||
for i in 1...(n + 1)
|
||||
# 状态转移:首列
|
||||
leftup = dp.first # 暂存 dp[i-1, j-1]
|
||||
dp[0] += 1
|
||||
# 状态转移:其余列
|
||||
for j in 1...(m + 1)
|
||||
temp = dp[j]
|
||||
if s[i - 1] == t[j - 1]
|
||||
# 若两字符相等,则直接跳过此两字符
|
||||
dp[j] = leftup
|
||||
else
|
||||
# 最少编辑步数 = 插入、删除、替换这三种操作的最少编辑步数 + 1
|
||||
dp[j] = [dp[j - 1], dp[j], leftup].min + 1
|
||||
end
|
||||
leftup = temp # 更新为下一轮的 dp[i-1, j-1]
|
||||
end
|
||||
end
|
||||
dp[m]
|
||||
end
|
||||
|
||||
### Driver Code ###
|
||||
if __FILE__ == $0
|
||||
s = 'bag'
|
||||
t = 'pack'
|
||||
n, m = s.length, t.length
|
||||
|
||||
# 暴力搜索
|
||||
res = edit_distance_dfs(s, t, n, m)
|
||||
puts "将 #{s} 更改为 #{t} 最少需要编辑 #{res} 步"
|
||||
|
||||
# 记忆化搜索
|
||||
mem = Array.new(n + 1) { Array.new(m + 1, -1) }
|
||||
res = edit_distance_dfs_mem(s, t, mem, n, m)
|
||||
puts "将 #{s} 更改为 #{t} 最少需要编辑 #{res} 步"
|
||||
|
||||
# 动态规划
|
||||
res = edit_distance_dp(s, t)
|
||||
puts "将 #{s} 更改为 #{t} 最少需要编辑 #{res} 步"
|
||||
|
||||
# 空间优化后的动态规划
|
||||
res = edit_distance_dp_comp(s, t)
|
||||
puts "将 #{s} 更改为 #{t} 最少需要编辑 #{res} 步"
|
||||
end
|
99
codes/ruby/chapter_dynamic_programming/knapsack.rb
Normal file
99
codes/ruby/chapter_dynamic_programming/knapsack.rb
Normal file
@ -0,0 +1,99 @@
|
||||
=begin
|
||||
File: knapsack.rb
|
||||
Created Time: 2024-05-29
|
||||
Author: Xuan Khoa Tu Nguyen (ngxktuzkai2000@gmail.com)
|
||||
=end
|
||||
|
||||
### 0-1 背包:暴力搜索 ###
|
||||
def knapsack_dfs(wgt, val, i, c)
|
||||
# 若已选完所有物品或背包无剩余容量,则返回价值 0
|
||||
return 0 if i == 0 || c == 0
|
||||
# 若超过背包容量,则只能选择不放入背包
|
||||
return knapsack_dfs(wgt, val, i - 1, c) if wgt[i - 1] > c
|
||||
# 计算不放入和放入物品 i 的最大价值
|
||||
no = knapsack_dfs(wgt, val, i - 1, c)
|
||||
yes = knapsack_dfs(wgt, val, i - 1, c - wgt[i - 1]) + val[i - 1]
|
||||
# 返回两种方案中价值更大的那一个
|
||||
[no, yes].max
|
||||
end
|
||||
|
||||
### 0-1 背包:记忆化搜索 ###
|
||||
def knapsack_dfs_mem(wgt, val, mem, i, c)
|
||||
# 若已选完所有物品或背包无剩余容量,则返回价值 0
|
||||
return 0 if i == 0 || c == 0
|
||||
# 若已有记录,则直接返回
|
||||
return mem[i][c] if mem[i][c] != -1
|
||||
# 若超过背包容量,则只能选择不放入背包
|
||||
return knapsack_dfs_mem(wgt, val, mem, i - 1, c) if wgt[i - 1] > c
|
||||
# 计算不放入和放入物品 i 的最大价值
|
||||
no = knapsack_dfs_mem(wgt, val, mem, i - 1, c)
|
||||
yes = knapsack_dfs_mem(wgt, val, mem, i - 1, c - wgt[i - 1]) + val[i - 1]
|
||||
# 记录并返回两种方案中价值更大的那一个
|
||||
mem[i][c] = [no, yes].max
|
||||
end
|
||||
|
||||
### 0-1 背包:动态规划 ###
|
||||
def knapsack_dp(wgt, val, cap)
|
||||
n = wgt.length
|
||||
# 初始化 dp 表
|
||||
dp = Array.new(n + 1) { Array.new(cap + 1, 0) }
|
||||
# 状态转移
|
||||
for i in 1...(n + 1)
|
||||
for c in 1...(cap + 1)
|
||||
if wgt[i - 1] > c
|
||||
# 若超过背包容量,则不选物品 i
|
||||
dp[i][c] = dp[i - 1][c]
|
||||
else
|
||||
# 不选和选物品 i 这两种方案的较大值
|
||||
dp[i][c] = [dp[i - 1][c], dp[i - 1][c - wgt[i - 1]] + val[i - 1]].max
|
||||
end
|
||||
end
|
||||
end
|
||||
dp[n][cap]
|
||||
end
|
||||
|
||||
### 0-1 背包:空间优化后的动态规划 ###
|
||||
def knapsack_dp_comp(wgt, val, cap)
|
||||
n = wgt.length
|
||||
# 初始化 dp 表
|
||||
dp = Array.new(cap + 1, 0)
|
||||
# 状态转移
|
||||
for i in 1...(n + 1)
|
||||
# 倒序遍历
|
||||
for c in cap.downto(1)
|
||||
if wgt[i - 1] > c
|
||||
# 若超过背包容量,则不选物品 i
|
||||
dp[c] = dp[c]
|
||||
else
|
||||
# 不选和选物品 i 这两种方案的较大值
|
||||
dp[c] = [dp[c], dp[c - wgt[i - 1]] + val[i - 1]].max
|
||||
end
|
||||
end
|
||||
end
|
||||
dp[cap]
|
||||
end
|
||||
|
||||
### Driver Code ###
|
||||
if __FILE__ == $0
|
||||
wgt = [10, 20, 30, 40, 50]
|
||||
val = [50, 120, 150, 210, 240]
|
||||
cap = 50
|
||||
n = wgt.length
|
||||
|
||||
# 暴力搜索
|
||||
res = knapsack_dfs(wgt, val, n, cap)
|
||||
puts "不超过背包容量的最大物品价值为 #{res}"
|
||||
|
||||
# 记忆化搜索
|
||||
mem = Array.new(n + 1) { Array.new(cap + 1, -1) }
|
||||
res = knapsack_dfs_mem(wgt, val, mem, n, cap)
|
||||
puts "不超过背包容量的最大物品价值为 #{res}"
|
||||
|
||||
# 动态规划
|
||||
res = knapsack_dp(wgt, val, cap)
|
||||
puts "不超过背包容量的最大物品价值为 #{res}"
|
||||
|
||||
# 空间优化后的动态规划
|
||||
res = knapsack_dp_comp(wgt, val, cap)
|
||||
puts "不超过背包容量的最大物品价值为 #{res}"
|
||||
end
|
@ -0,0 +1,39 @@
|
||||
=begin
|
||||
File: min_cost_climbing_stairs_dp.rb
|
||||
Created Time: 2024-05-29
|
||||
Author: Xuan Khoa Tu Nguyen (ngxktuzkai2000@gmail.com)
|
||||
=end
|
||||
|
||||
### 爬楼梯最小代价:动态规划 ###
|
||||
def min_cost_climbing_stairs_dp(cost)
|
||||
n = cost.length - 1
|
||||
return cost[n] if n == 1 || n == 2
|
||||
# 初始化 dp 表,用于存储子问题的解
|
||||
dp = Array.new(n + 1, 0)
|
||||
# 初始状态:预设最小子问题的解
|
||||
dp[1], dp[2] = cost[1], cost[2]
|
||||
# 状态转移:从较小子问题逐步求解较大子问题
|
||||
(3...(n + 1)).each { |i| dp[i] = [dp[i - 1], dp[i - 2]].min + cost[i] }
|
||||
dp[n]
|
||||
end
|
||||
|
||||
# 爬楼梯最小代价:空间优化后的动态规划
|
||||
def min_cost_climbing_stairs_dp_comp(cost)
|
||||
n = cost.length - 1
|
||||
return cost[n] if n == 1 || n == 2
|
||||
a, b = cost[1], cost[2]
|
||||
(3...(n + 1)).each { |i| a, b = b, [a, b].min + cost[i] }
|
||||
b
|
||||
end
|
||||
|
||||
### Driver Code ###
|
||||
if __FILE__ == $0
|
||||
cost = [0, 1, 10, 1, 1, 1, 10, 1, 1, 10, 1]
|
||||
puts "输入楼梯的代价列表为 #{cost}"
|
||||
|
||||
res = min_cost_climbing_stairs_dp(cost)
|
||||
puts "爬完楼梯的最低代价为 #{res}"
|
||||
|
||||
res = min_cost_climbing_stairs_dp_comp(cost)
|
||||
puts "爬完楼梯的最低代价为 #{res}"
|
||||
end
|
93
codes/ruby/chapter_dynamic_programming/min_path_sum.rb
Normal file
93
codes/ruby/chapter_dynamic_programming/min_path_sum.rb
Normal file
@ -0,0 +1,93 @@
|
||||
=begin
|
||||
File: min_path_sum.rb
|
||||
Created Time: 2024-05-29
|
||||
Author: Xuan Khoa Tu Nguyen (ngxktuzkai2000@gmail.com)
|
||||
=end
|
||||
|
||||
### 最小路径和:暴力搜索 ###
|
||||
def min_path_sum_dfs(grid, i, j)
|
||||
# 若为左上角单元格,则终止搜索
|
||||
return grid[i][j] if i == 0 && j == 0
|
||||
# 若行列索引越界,则返回 +∞ 代价
|
||||
return Float::INFINITY if i < 0 || j < 0
|
||||
# 计算从左上角到 (i-1, j) 和 (i, j-1) 的最小路径代价
|
||||
up = min_path_sum_dfs(grid, i - 1, j)
|
||||
left = min_path_sum_dfs(grid, i, j - 1)
|
||||
# 返回从左上角到 (i, j) 的最小路径代价
|
||||
[left, up].min + grid[i][j]
|
||||
end
|
||||
|
||||
### 最小路径和:记忆化搜索 ###
|
||||
def min_path_sum_dfs_mem(grid, mem, i, j)
|
||||
# 若为左上角单元格,则终止搜索
|
||||
return grid[0][0] if i == 0 && j == 0
|
||||
# 若行列索引越界,则返回 +∞ 代价
|
||||
return Float::INFINITY if i < 0 || j < 0
|
||||
# 若已有记录,则直接返回
|
||||
return mem[i][j] if mem[i][j] != -1
|
||||
# 左边和上边单元格的最小路径代价
|
||||
up = min_path_sum_dfs_mem(grid, mem, i - 1, j)
|
||||
left = min_path_sum_dfs_mem(grid, mem, i, j - 1)
|
||||
# 记录并返回左上角到 (i, j) 的最小路径代价
|
||||
mem[i][j] = [left, up].min + grid[i][j]
|
||||
end
|
||||
|
||||
### 最小路径和:动态规划 ###
|
||||
def min_path_sum_dp(grid)
|
||||
n, m = grid.length, grid.first.length
|
||||
# 初始化 dp 表
|
||||
dp = Array.new(n) { Array.new(m, 0) }
|
||||
dp[0][0] = grid[0][0]
|
||||
# 状态转移:首行
|
||||
(1...m).each { |j| dp[0][j] = dp[0][j - 1] + grid[0][j] }
|
||||
# 状态转移:首列
|
||||
(1...n).each { |i| dp[i][0] = dp[i - 1][0] + grid[i][0] }
|
||||
# 状态转移:其余行和列
|
||||
for i in 1...n
|
||||
for j in 1...m
|
||||
dp[i][j] = [dp[i][j - 1], dp[i - 1][j]].min + grid[i][j]
|
||||
end
|
||||
end
|
||||
dp[n -1][m -1]
|
||||
end
|
||||
|
||||
### 最小路径和:空间优化后的动态规划 ###
|
||||
def min_path_sum_dp_comp(grid)
|
||||
n, m = grid.length, grid.first.length
|
||||
# 初始化 dp 表
|
||||
dp = Array.new(m, 0)
|
||||
# 状态转移:首行
|
||||
dp[0] = grid[0][0]
|
||||
(1...m).each { |j| dp[j] = dp[j - 1] + grid[0][j] }
|
||||
# 状态转移:其余行
|
||||
for i in 1...n
|
||||
# 状态转移:首列
|
||||
dp[0] = dp[0] + grid[i][0]
|
||||
# 状态转移:其余列
|
||||
(1...m).each { |j| dp[j] = [dp[j - 1], dp[j]].min + grid[i][j] }
|
||||
end
|
||||
dp[m - 1]
|
||||
end
|
||||
|
||||
### Driver Code ###
|
||||
if __FILE__ == $0
|
||||
grid = [[1, 3, 1, 5], [2, 2, 4, 2], [5, 3, 2, 1], [4, 3, 5, 2]]
|
||||
n, m = grid.length, grid.first.length
|
||||
|
||||
# 暴力搜索
|
||||
res = min_path_sum_dfs(grid, n - 1, m - 1)
|
||||
puts "从左上角到右下角的做小路径和为 #{res}"
|
||||
|
||||
# 记忆化搜索
|
||||
mem = Array.new(n) { Array.new(m, - 1) }
|
||||
res = min_path_sum_dfs_mem(grid, mem, n - 1, m -1)
|
||||
puts "从左上角到右下角的做小路径和为 #{res}"
|
||||
|
||||
# 动态规划
|
||||
res = min_path_sum_dp(grid)
|
||||
puts "从左上角到右下角的做小路径和为 #{res}"
|
||||
|
||||
# 空间优化后的动态规划
|
||||
res = min_path_sum_dp_comp(grid)
|
||||
puts "从左上角到右下角的做小路径和为 #{res}"
|
||||
end
|
61
codes/ruby/chapter_dynamic_programming/unbounded_knapsack.rb
Normal file
61
codes/ruby/chapter_dynamic_programming/unbounded_knapsack.rb
Normal file
@ -0,0 +1,61 @@
|
||||
=begin
|
||||
File: unbounded_knapsack.rb
|
||||
Created Time: 2024-05-29
|
||||
Author: Xuan Khoa Tu Nguyen (ngxktuzkai2000@gmail.com)
|
||||
=end
|
||||
|
||||
### 完全背包:动态规划 ###
|
||||
def unbounded_knapsack_dp(wgt, val, cap)
|
||||
n = wgt.length
|
||||
# 初始化 dp 表
|
||||
dp = Array.new(n + 1) { Array.new(cap + 1, 0) }
|
||||
# 状态转移
|
||||
for i in 1...(n + 1)
|
||||
for c in 1...(cap + 1)
|
||||
if wgt[i - 1] > c
|
||||
# 若超过背包容量,则不选物品 i
|
||||
dp[i][c] = dp[i - 1][c]
|
||||
else
|
||||
# 不选和选物品 i 这两种方案的较大值
|
||||
dp[i][c] = [dp[i - 1][c], dp[i][c - wgt[i - 1]] + val[i - 1]].max
|
||||
end
|
||||
end
|
||||
end
|
||||
dp[n][cap]
|
||||
end
|
||||
|
||||
### 完全背包:空间优化后的动态规划 ##3
|
||||
def unbounded_knapsack_dp_comp(wgt, val, cap)
|
||||
n = wgt.length
|
||||
# 初始化 dp 表
|
||||
dp = Array.new(cap + 1, 0)
|
||||
# 状态转移
|
||||
for i in 1...(n + 1)
|
||||
# 正序遍历
|
||||
for c in 1...(cap + 1)
|
||||
if wgt[i -1] > c
|
||||
# 若超过背包容量,则不选物品 i
|
||||
dp[c] = dp[c]
|
||||
else
|
||||
# 不选和选物品 i 这两种方案的较大值
|
||||
dp[c] = [dp[c], dp[c - wgt[i - 1]] + val[i - 1]].max
|
||||
end
|
||||
end
|
||||
end
|
||||
dp[cap]
|
||||
end
|
||||
|
||||
### Driver Code ###
|
||||
if __FILE__ == $0
|
||||
wgt = [1, 2, 3]
|
||||
val = [5, 11, 15]
|
||||
cap = 4
|
||||
|
||||
# 动态规划
|
||||
res = unbounded_knapsack_dp(wgt, val, cap)
|
||||
puts "不超过背包容量的最大物品价值为 #{res}"
|
||||
|
||||
# 空间优化后的动态规划
|
||||
res = unbounded_knapsack_dp_comp(wgt, val, cap)
|
||||
puts "不超过背包容量的最大物品价值为 #{res}"
|
||||
end
|
@ -74,7 +74,6 @@ fn find(nums: &[i32], target: i32) -> Option<usize> {
|
||||
fn main() {
|
||||
/* 初始化数组 */
|
||||
let arr: [i32; 5] = [0; 5];
|
||||
let slice: &[i32] = &[0; 5];
|
||||
print!("数组 arr = ");
|
||||
print_util::print_array(&arr);
|
||||
// 在 Rust 中,指定长度时([i32; 5])为数组,不指定长度时(&[i32])为切片
|
||||
|
@ -10,7 +10,7 @@ use std::{cell::RefCell, rc::Rc};
|
||||
use tree_node::{vec_to_tree, TreeNode};
|
||||
|
||||
/* 前序遍历:例题一 */
|
||||
fn pre_order(res: &mut Vec<Rc<RefCell<TreeNode>>>, root: Option<Rc<RefCell<TreeNode>>>) {
|
||||
fn pre_order(res: &mut Vec<Rc<RefCell<TreeNode>>>, root: Option<&Rc<RefCell<TreeNode>>>) {
|
||||
if root.is_none() {
|
||||
return;
|
||||
}
|
||||
@ -19,8 +19,8 @@ fn pre_order(res: &mut Vec<Rc<RefCell<TreeNode>>>, root: Option<Rc<RefCell<TreeN
|
||||
// 记录解
|
||||
res.push(node.clone());
|
||||
}
|
||||
pre_order(res, node.borrow().left.clone());
|
||||
pre_order(res, node.borrow().right.clone());
|
||||
pre_order(res, node.borrow().left.as_ref());
|
||||
pre_order(res, node.borrow().right.as_ref());
|
||||
}
|
||||
}
|
||||
|
||||
@ -32,7 +32,7 @@ pub fn main() {
|
||||
|
||||
// 前序遍历
|
||||
let mut res = Vec::new();
|
||||
pre_order(&mut res, root);
|
||||
pre_order(&mut res, root.as_ref());
|
||||
|
||||
println!("\n输出所有值为 7 的节点");
|
||||
let mut vals = Vec::new();
|
||||
|
@ -13,7 +13,7 @@ use tree_node::{vec_to_tree, TreeNode};
|
||||
fn pre_order(
|
||||
res: &mut Vec<Vec<Rc<RefCell<TreeNode>>>>,
|
||||
path: &mut Vec<Rc<RefCell<TreeNode>>>,
|
||||
root: Option<Rc<RefCell<TreeNode>>>,
|
||||
root: Option<&Rc<RefCell<TreeNode>>>,
|
||||
) {
|
||||
if root.is_none() {
|
||||
return;
|
||||
@ -25,10 +25,10 @@ fn pre_order(
|
||||
// 记录解
|
||||
res.push(path.clone());
|
||||
}
|
||||
pre_order(res, path, node.borrow().left.clone());
|
||||
pre_order(res, path, node.borrow().right.clone());
|
||||
pre_order(res, path, node.borrow().left.as_ref());
|
||||
pre_order(res, path, node.borrow().right.as_ref());
|
||||
// 回退
|
||||
path.remove(path.len() - 1);
|
||||
path.pop();
|
||||
}
|
||||
}
|
||||
|
||||
@ -41,7 +41,7 @@ pub fn main() {
|
||||
// 前序遍历
|
||||
let mut path = Vec::new();
|
||||
let mut res = Vec::new();
|
||||
pre_order(&mut res, &mut path, root);
|
||||
pre_order(&mut res, &mut path, root.as_ref());
|
||||
|
||||
println!("\n输出所有根节点到节点 7 的路径");
|
||||
for path in res {
|
||||
|
@ -13,7 +13,7 @@ use tree_node::{vec_to_tree, TreeNode};
|
||||
fn pre_order(
|
||||
res: &mut Vec<Vec<Rc<RefCell<TreeNode>>>>,
|
||||
path: &mut Vec<Rc<RefCell<TreeNode>>>,
|
||||
root: Option<Rc<RefCell<TreeNode>>>,
|
||||
root: Option<&Rc<RefCell<TreeNode>>>,
|
||||
) {
|
||||
// 剪枝
|
||||
if root.is_none() || root.as_ref().unwrap().borrow().val == 3 {
|
||||
@ -26,10 +26,10 @@ fn pre_order(
|
||||
// 记录解
|
||||
res.push(path.clone());
|
||||
}
|
||||
pre_order(res, path, node.borrow().left.clone());
|
||||
pre_order(res, path, node.borrow().right.clone());
|
||||
pre_order(res, path, node.borrow().left.as_ref());
|
||||
pre_order(res, path, node.borrow().right.as_ref());
|
||||
// 回退
|
||||
path.remove(path.len() - 1);
|
||||
path.pop();
|
||||
}
|
||||
}
|
||||
|
||||
@ -42,7 +42,7 @@ pub fn main() {
|
||||
// 前序遍历
|
||||
let mut path = Vec::new();
|
||||
let mut res = Vec::new();
|
||||
pre_order(&mut res, &mut path, root);
|
||||
pre_order(&mut res, &mut path, root.as_ref());
|
||||
|
||||
println!("\n输出所有根节点到节点 7 的路径,路径中不包含值为 3 的节点");
|
||||
for path in res {
|
||||
|
@ -11,7 +11,7 @@ use tree_node::{vec_to_tree, TreeNode};
|
||||
|
||||
/* 判断当前状态是否为解 */
|
||||
fn is_solution(state: &mut Vec<Rc<RefCell<TreeNode>>>) -> bool {
|
||||
return !state.is_empty() && state.get(state.len() - 1).unwrap().borrow().val == 7;
|
||||
return !state.is_empty() && state.last().unwrap().borrow().val == 7;
|
||||
}
|
||||
|
||||
/* 记录解 */
|
||||
@ -23,8 +23,8 @@ fn record_solution(
|
||||
}
|
||||
|
||||
/* 判断在当前状态下,该选择是否合法 */
|
||||
fn is_valid(_: &mut Vec<Rc<RefCell<TreeNode>>>, choice: Rc<RefCell<TreeNode>>) -> bool {
|
||||
return choice.borrow().val != 3;
|
||||
fn is_valid(_: &mut Vec<Rc<RefCell<TreeNode>>>, choice: Option<&Rc<RefCell<TreeNode>>>) -> bool {
|
||||
return choice.is_some() && choice.unwrap().borrow().val != 3;
|
||||
}
|
||||
|
||||
/* 更新状态 */
|
||||
@ -34,13 +34,13 @@ fn make_choice(state: &mut Vec<Rc<RefCell<TreeNode>>>, choice: Rc<RefCell<TreeNo
|
||||
|
||||
/* 恢复状态 */
|
||||
fn undo_choice(state: &mut Vec<Rc<RefCell<TreeNode>>>, _: Rc<RefCell<TreeNode>>) {
|
||||
state.remove(state.len() - 1);
|
||||
state.pop();
|
||||
}
|
||||
|
||||
/* 回溯算法:例题三 */
|
||||
fn backtrack(
|
||||
state: &mut Vec<Rc<RefCell<TreeNode>>>,
|
||||
choices: &mut Vec<Rc<RefCell<TreeNode>>>,
|
||||
choices: &Vec<Option<&Rc<RefCell<TreeNode>>>>,
|
||||
res: &mut Vec<Vec<Rc<RefCell<TreeNode>>>>,
|
||||
) {
|
||||
// 检查是否为解
|
||||
@ -49,22 +49,22 @@ fn backtrack(
|
||||
record_solution(state, res);
|
||||
}
|
||||
// 遍历所有选择
|
||||
for choice in choices {
|
||||
for &choice in choices.iter() {
|
||||
// 剪枝:检查选择是否合法
|
||||
if is_valid(state, choice.clone()) {
|
||||
if is_valid(state, choice) {
|
||||
// 尝试:做出选择,更新状态
|
||||
make_choice(state, choice.clone());
|
||||
make_choice(state, choice.unwrap().clone());
|
||||
// 进行下一轮选择
|
||||
backtrack(
|
||||
state,
|
||||
&mut vec![
|
||||
choice.borrow().left.clone().unwrap(),
|
||||
choice.borrow().right.clone().unwrap(),
|
||||
&vec![
|
||||
choice.unwrap().borrow().left.as_ref(),
|
||||
choice.unwrap().borrow().right.as_ref(),
|
||||
],
|
||||
res,
|
||||
);
|
||||
// 回退:撤销选择,恢复到之前的状态
|
||||
undo_choice(state, choice.clone());
|
||||
undo_choice(state, choice.unwrap().clone());
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -77,7 +77,7 @@ pub fn main() {
|
||||
|
||||
// 回溯算法
|
||||
let mut res = Vec::new();
|
||||
backtrack(&mut Vec::new(), &mut vec![root.unwrap()], &mut res);
|
||||
backtrack(&mut Vec::new(), &mut vec![root.as_ref()], &mut res);
|
||||
|
||||
println!("\n输出所有根节点到节点 7 的路径,要求路径中不包含值为 3 的节点");
|
||||
for path in res {
|
||||
|
@ -122,17 +122,17 @@
|
||||
Queue<Integer> minHeap = new PriorityQueue<>();
|
||||
// 初始化大顶堆(使用 lambda 表达式修改 Comparator 即可)
|
||||
Queue<Integer> maxHeap = new PriorityQueue<>((a, b) -> b - a);
|
||||
|
||||
|
||||
/* 元素入堆 */
|
||||
maxHeap.offer(1);
|
||||
maxHeap.offer(3);
|
||||
maxHeap.offer(2);
|
||||
maxHeap.offer(5);
|
||||
maxHeap.offer(4);
|
||||
|
||||
|
||||
/* 获取堆顶元素 */
|
||||
int peek = maxHeap.peek(); // 5
|
||||
|
||||
|
||||
/* 堆顶元素出堆 */
|
||||
// 出堆元素会形成一个从大到小的序列
|
||||
peek = maxHeap.poll(); // 5
|
||||
@ -140,13 +140,13 @@
|
||||
peek = maxHeap.poll(); // 3
|
||||
peek = maxHeap.poll(); // 2
|
||||
peek = maxHeap.poll(); // 1
|
||||
|
||||
|
||||
/* 获取堆大小 */
|
||||
int size = maxHeap.size();
|
||||
|
||||
|
||||
/* 判断堆是否为空 */
|
||||
boolean isEmpty = maxHeap.isEmpty();
|
||||
|
||||
|
||||
/* 输入列表并建堆 */
|
||||
minHeap = new PriorityQueue<>(Arrays.asList(1, 3, 2, 5, 4));
|
||||
```
|
||||
@ -337,7 +337,7 @@
|
||||
max_heap.push(2);
|
||||
max_heap.push(5);
|
||||
max_heap.push(4);
|
||||
|
||||
|
||||
/* 获取堆顶元素 */
|
||||
let peek = max_heap.peek().unwrap(); // 5
|
||||
|
||||
@ -373,17 +373,17 @@
|
||||
var minHeap = PriorityQueue<Int>()
|
||||
// 初始化大顶堆(使用 lambda 表达式修改 Comparator 即可)
|
||||
val maxHeap = PriorityQueue { a: Int, b: Int -> b - a }
|
||||
|
||||
|
||||
/* 元素入堆 */
|
||||
maxHeap.offer(1)
|
||||
maxHeap.offer(3)
|
||||
maxHeap.offer(2)
|
||||
maxHeap.offer(5)
|
||||
maxHeap.offer(4)
|
||||
|
||||
|
||||
/* 获取堆顶元素 */
|
||||
var peek = maxHeap.peek() // 5
|
||||
|
||||
|
||||
/* 堆顶元素出堆 */
|
||||
// 出堆元素会形成一个从大到小的序列
|
||||
peek = maxHeap.poll() // 5
|
||||
@ -391,13 +391,13 @@
|
||||
peek = maxHeap.poll() // 3
|
||||
peek = maxHeap.poll() // 2
|
||||
peek = maxHeap.poll() // 1
|
||||
|
||||
|
||||
/* 获取堆大小 */
|
||||
val size = maxHeap.size
|
||||
|
||||
|
||||
/* 判断堆是否为空 */
|
||||
val isEmpty = maxHeap.isEmpty()
|
||||
|
||||
|
||||
/* 输入列表并建堆 */
|
||||
minHeap = PriorityQueue(mutableListOf(1, 3, 2, 5, 4))
|
||||
```
|
||||
@ -405,7 +405,7 @@
|
||||
=== "Ruby"
|
||||
|
||||
```ruby title="heap.rb"
|
||||
|
||||
# Ruby 未提供内置 Heap 类
|
||||
```
|
||||
|
||||
=== "Zig"
|
||||
|
Loading…
Reference in New Issue
Block a user